A threonyl-tRNA synthetase-mediated translation initiation machinery

Integration Core

Authors Seung Jae Jeong, Shinhye Park, Loi T. Nguyen, Jungwon Hwang, Eun-Young Lee, Hoi-Khoanh Giong, Jeong-Soo Lee, Ina Yoon, Ji-Hyun Lee, Jong Hyun Kim, Hoi Kyoung Kim, Doyeun Kim, Won Suk Yang, Seon-Young Kim, Chan Yong Lee, Kweon Yu, Nahum Sonenberg, Myung Hee Kim, Sunghoon Kim
Journal Nature Communications
Vol.(no.) 10(1)
Pages 1357
Year 20190322
DOI https://doi.org/10.1038/s41467-019-09086-0
Attach

Abstract

A fundamental question in biology is how vertebrates evolved and differ from invertebrates, and little is known about differences in the regulation of translation in the two systems. Herein, we identify a threonyl-tRNA synthetase (TRS)-mediated translation initiation machinery that specifically interacts with eIF4E homologous protein, and forms machinery that is structurally analogous to the eIF4F-mediated translation initiation machinery via the recruitment of other translation initiation components. Biochemical and RNA immunoprecipitation analyses coupled to sequencing suggest that this machinery emerged as a gain-of-function event in the vertebrate lineage, and it positively regulates the translation of mRNAs required for vertebrate development. Collectively, our findings demonstrate that TRS evolved to regulate vertebrate translation initiation via its dual role as a scaffold for the assembly of initiation components and as a selector of target mRNAs. This work highlights the functional significance of aminoacyl-tRNA synthetases in the emergence and control of higher order organisms.

Original Document: https://www.nature.com/articles/s41467-019-09086-0.pdf

CONTACT US

We're not around right now. But you can send us an email and we'll get back to you, asap.

Sending

©2010-2025 Medicinal Bioconvergence Research Center. All rights reserved.

Log in with your credentials

Forgot your details?