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Abstract

Mammalian cells have cytoplasmic and mitochondrial aminoacyl-tRNA synthetases

(ARSs) that catalyze aminoacylation of tRNAs during protein synthesis. Despite their

housekeeping functions in protein synthesis, recently, ARSs and ARS-interacting multi-

functional proteins (AIMPs) have been shown to play important roles in disease patho-

genesis through their interactions with disease-related molecules. However, there are

lacks of data resources and analytical tools that can be used to examine disease associ-

ations of ARS/AIMPs. Here, we developed an Integrated Database for ARSs (IDA), a

resource database including cancer genomic/proteomic and interaction data of ARS/

AIMPs. IDA includes mRNA expression, somatic mutation, copy number variation and

phosphorylation data of ARS/AIMPs and their interacting proteins in various cancers.

IDA further includes an array of analytical tools for exploration of disease association of

ARS/AIMPs, identification of disease-associated ARS/AIMP interactors and reconstruc-

tion of ARS-dependent disease-perturbed network models. Therefore, IDA provides both
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comprehensive data resources and analytical tools for understanding potential roles of

ARS/AIMPs in cancers.

Database URL: http://ida.biocon.re.kr/, http://ars.biocon.re.kr/

Introduction

Cells have an array of cytoplasmic and mitochondrial

aminoacyl-tRNA synthetases (ARSs) that are involved in

cellular protein synthesis. ARSs catalyze the ligation of

amino acids to their cognate tRNAs during protein synthe-

sis. Thus, ARSs have been considered as housekeepers

involved in protein synthesis, being less sensitive to system

perturbation compared with signal mediators or transcrip-

tional factors that are fully dedicated to system control.

However, recently, aberrant expression, mislocalization

and variant formation of ARSs have been observed in

various cancer cells (1). For this reason, more attention is

being paid to potential roles of ARS/ARS-interacting multi-

functional proteins (AIMPs) in system regulation and

pathogenesis of various diseases.

Mammalian ARSs contain additional domains attached

to their catalytic domains, compared with prokaryotic

counterparts (2). Using these additional domains, they

interact with other molecules to form diverse complexes,

thereby affecting activities of disease-related cellular proc-

esses (3). More intriguingly, several mammalian ARSs

form a macromolecular protein complex with three non-

enzymatic factors named AIMPs (4, 5). Although they are

not the enzymes like ARSs, they are considered as the

members of the ARS community since they play critical

scaffolding role in the structural integrity of the multi-

tRNA synthetase complex (MSC). Thus, we consider three

AIMPs together with 20 cytosolic ARSs as the same

community group. A growing volume of evidence shows

that ARS/AIMPs are closely associated with disease patho-

genesis through their interactions with disease-related

molecules (1, 6). These data indicate that alterations in

interactions of ARS/AIMPs, together with abnormal

expression and mislocalization of ARS/AIMPs, can lead to

perturbation of disease-related cellular networks.

Huge amounts of genomic, transcriptomic, proteomic

and interaction data for diverse diseases have been

accumulated. Recently, the importance of ARS/AIMPs in

cancer pathogenesis has been addressed in a series of publi-

cations (7–14). Thus, we previously reviewed potential

roles of ARS/AIMPs in various cancers by reanalyzing

previously published global datasets (1). However, explor-

ation of abnormal expression and interaction of ARS/

AIMPs in these diseases is limited due to the lack of

comprehensive resources that can be used to effectively

navigate and explore alterations in genomic, tran-

scriptomic and proteomic data and also in interactions of

ARS/AIMPs in various diseases. Furthermore, there is a

severe lack of analytical tools that can be used to analyze

associations of ARS/AIMPs with human diseases and to re-

construct ARS/AIMP-dependent disease-perturbed net-

work models. Here, we present an Integrated Database for

ARS/AIMPs (IDA) that provides (i) genomic, tran-

scriptomic and proteomic data [mRNA expression, som-

atic mutation, copy number variation (CNV) and

phosphorylation data] of ARS/AIMPs and their interactors

in various cancers and (ii) protein–protein interactions

(PPIs) of ARS/AIMPs.

Materials and methods

Database and website infrastructure

IDA is based on the relational database management sys-

tem for data storage and integration with external data

sources. Gene expression and protein-interaction data are

stored in a MySQL database. Identifiers of all probes on

the microarray types for gene expression data, Ensembl

and dbSNP identifiers for genomic mutation data, identi-

fiers of international protein index or UniProtKB/Swiss-

Prot for protein expression or post-translational modifi-

cations (PTMs) and all identifiers for PPIs in the interac-

tome databases have been converted into NCBI Entrez

identifiers. Using the relationships among different identi-

fiers, we have optimized the database schema

(Supplementary Figure S1) to improve the response time

of the database when gene/protein expression, genomic

mutation, PTM and PPI data are searched for. Moreover,

IDA provides a web-based user interface for data explor-

ation and visualization. Cancer-associated differential ex-

pression, mutation and CNVs of ARS/AIMPs and their

first and second neighbors were summarized using sev-

eral visualization tools, such as two-way heat maps, a

pinwheel-shaped heat map and bar graphs, respectively.

These data for individual genes can be visualized using

profile plots or extracted in a tubular format. Finally,

two different network analysis tools, Cancer-associated

network and Functional modules are servicing. IDA web

site is constructed with PHP 5.3.3, SWFObject v1.5,

MATLAB R2011a, MySQL 5.1.71, CentOS release 6.5

and Apache/2.2.15 (Unix).
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Identification of differentially expressed genes

IDA includes 40 cancer gene expression datasets. For the

36 cancer datasets generated from Affymetrix microarray

platforms, the log2 intensities in each gene expression data-

set were normalized using the GC-RMA normalization

method (15). For the other four datasets generated from

Illumina, ABI and custom microarray platforms, the log2-

intensities were normalized using the quantile normaliza-

tion method (16). For each dataset, the expressed genes

were then identified using a Gaussian mixture model

method as previously described (17). Briefly, in the mixture

modeling, the distribution of the observed probe intensity

(probeset intensity for Affymetrix data) was fitted by two

Gaussian probability density functions: one was for

expressed genes while the other was for non-expressed

genes. We then selected the expressed genes as the ones

whose maximum intensities across all samples in the data-

set were higher than the threshold intensity at which the

two fitted Gaussian probability density functions meet.

To identify differentially expressed genes (DEGs) between

cancer and normal samples, an integrative statistical hy-

pothesis testing was performed (18, 19). Briefly, Student

t-test and log2-median-ratio test were applied to calculate

T values and log2-median-ratios for all the genes.

Empirical distributions of the null hypothesis were then

estimated by performing random permutations of samples

and then by performing the kernel density estimation (20)

to T values and log2-median-ratios resulted from the ran-

dom permutations. Next, the adjusted P values of each

gene for the individual tests were computed by the two-

tailed test using the empirical distribution. The P values

from the two tests were then combined using Stouffer’s

method (19). The DEGs were identified as the genes with

P� 0.05. Finally, as the representative P values of the

genes in multiple datasets of each cancer type, the com-

bined P values of genes in individual datasets were sum-

marized using Stouffer’s method (19).

Deregulation and co-association scores for nodes

and edges in the network models

For the nodes (ARS/AIMPs and there first cancer-

associated neighbors) and edges in the ARS/AIMP cancer-

associated network, the two types of cancer association

scores model were estimated. First, the deregulation score

for each node which denotes the representative degree of

deregulation in the 10 cancer types for which gene expres-

sion data were collected. The combined P values of each

node in 10 different cancer types were first calculated.

These P values were then transformed to Z values using

the inverse standard normal cumulative distribution. The

cumulative sum of Z values of its direct interactors

for each node was calculated in each cancer type (21).

Finally, the average of the cumulative sum of Z values

in 10 cancer types was computed as the deregulation

score. Second, the co-association score between an ARS/

AIMP and their first neighbors representing the extent

of co-deregulation in 10 cancer types is estimated as

‘the number of cancer types where the interacting pairs

of ARS/AIMP-first neighbors are commonly differen-

tially expressed’ divided by ‘the total number of cancer

types’.

Identification of key modules in the ARS/AIMP

network model

Key modules in the ARS/AIMP network were identified

using the random walk with restart (RWR) algorithm

previously reported (22). Briefly, in the RWR algorithm,

we used all nodes in the network as the seeds and assigned

equal initial probabilities (pt at t¼ 0) to the seeds. Random

walks then started with the transitions rate of probabil-

ity¼0.75 and then stopped until L1 norm of the difference

between Pt and Ptþ1 (random walk probabilities of the

nodes at t and tþ1, respectively) became <10�6. To evalu-

ate the significance of pt, we repeated the random walk

process for randomized networks where the edges were

randomly permuted, estimated an empirical null distribu-

tion of Pt resulted from the randomized networks and

P values of Pt for the nodes in the real network by the

right-sided test using the empirical null distribution. From

the ARS/AIMP network, we finally identified a set of sub-

networks including the nodes with P< 0.05 and defined

the subnetworks as key modules.

Identification of evolutionarily conserved motifs in

the ARS/AIMP network model

To identify evolutionarily conserved regulatory motifs, we

first mapped the nodes in the ARS/AIMP network model

for each species into the ortholog groups in eggnog (23)

and then removed redundant interactions and self-

interactions arising from many-to-one mapping. In the net-

work model for each species, regulatory motifs were

searched using the ortholog groups, and the overlapped

ones among the species were identified as evolutionarily

conserved ones. The interactions among the ortholog

groups in the conserved motifs were then converted to all

the possible protein interactions. After the conversion,

only the motifs composed of the interactions existing in the

real interactome were selected. Finally, among them, the

ones including at least one of ARS/AIMPs were selected as

a final list of evolutionarily conserved motifs.
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Results and discussion

Comprehensive data resources of ARS/AIMPs and

their interactors in IDA

Cancer-associated genes

Recently, huge amounts of global genomic, transcriptomic

and proteomic data for cells or tissues of various cancers

have been generated and deposited into numerous data-

bases. Although these data can be useful to understand

association of ARS/AIMPs with cancers, different types of

global data have been stored in separate databases, which

make analyses of ARS/AIMPs inefficient. To resolve this

problem, we collected genomic, transcriptomic, proteomic

and interaction data of ARS/AIMPs and their interactors

from numerous databases and integrated them to IDA. To

facilitate analyses of association of ARS/AIMPs with

cancers, we first defined cancer-associated genes (CAGs)

using NCI cancer gene index (Figure 1, upper left). Among

6955 human genes in the NCI cancer gene index, we se-

lected 3501 CAGs with the following attributes: (i) cancer

associations of the genes should be validated by manual

curation in the literatures; (ii) the genes should have no

conflicting indications regarding their cancer associations;

(iii) cancer associations of the genes should be experimen-

tally validated in human samples and (iv) the genes should

include one of the following role codes: Chemical_or_

Drug_Has_Mechanism_Of_Action, Chemical_or_Drug_

Has_Study_Therapeu-tic_Use_For, Chemical_or_Drug_FD

A_Approved_for_Disease, Chemical_or_Drug_Has_ Accep

ted_Therapeutic_Use_For, Gene_Malfunction_Associate

d_With_Disease and Gene_ Anormaly_has_Disease-Re

lat-ed_Function.

Figure 1. Data resources in IDA. IDA contains CAGs and genomic, transcriptomic, proteomic and PPIs for ARS/AIMPs and their first and second neigh-

bor CAGs. First, IDA provides 3501 CAGs selected from the 6955 genes in NCBI cancer gene index based on the filtering criteria (top left). See text for

the criteria. Second, IDA also provides genomic data (CNVs and somatic mutations) for ARS/AIMPs and their neighbors in diverse cancer types,

which were collected from CanGEM, TumorScape, CCLE and COSMIC (bottom left). Third, IDA contains gene expression data of ARS/AIMPs and their

neighbors for 10 cancer types, as well as P values and log2-fold-changes that represent differential expression of the genes in the 10 cancer types

(bottom right). IDA further contains proteomic data (protein abundance and PTMs) collected from dbDEPC, PHOSIDA and PhosPhoSitePlus. Finally,

IDA provides PPIs of ARS/AIMPs and their neighbors collected from 15 interactome databases.
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CAGs interacting with ARS/AIMPs

Mammalian ARS/AIMPs have additional domains to cata-

lytic domains (2). They interact with other molecules

through the additional domains, thereby affecting activities

of cancer-related cellular processes (3). Next, we thus iden-

tified the CAGs that interact with ARS/AIMPs among the

3501 CAGs. To this end, we collected 1 12 596 PPIs from

the following 15 interactome databases with (Figure 1,

upper right): (i) curated PPIs for each of which experimen-

tal evidence was previously reported from human protein

reference database (24), Kyoto Encyclopedia of Genes and

Genomes (25), Biomolecular interaction network database

(BIND) (26), Database of Interacting Proteins (27),

Biological General Repository for Interaction Datasets

(28), Reactome (29), Molecular INTeraction database

(30), IntAct (31), InnateDB (32), Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING, v9.0)

(33) and PharmDB (34) and (ii) predicted PPIs based on

paralog- and ortholog-based PPI prediction and text min-

ing from STRING, BIND, interologous interaction data-

base (I2D) (35), online predicted human interaction

database (36), human PPI map (HiMAP) (37) and human

PPI prediction (38). In addition, the resources that inte-

grate PPIs in individual interactome databases, such as

PSICQUIC (EBI) (39) and NCBI PPI databases, were also

used. On the basis of the collected PPIs, we identified 123

first neighbor CAGs and 1293 second neighbor CAGs of

ARS/AIMPs among the 3501 CAGs.

Transcriptomic data of ARS/AIMPs and their interacting

CAGs

Alteration of expression levels of the genes in cancers sug-

gests their associations with a broad spectrum of cancer

pathophysiological processes. To examine cancer-

associated alteration in gene expression, huge amounts of

gene expression profiles from diverse types of cancers have

been collected (40–43). Thus, we collected 40 cancer ex-

pression profiles for 10 representative cancer types (pan-

creatic, prostate, lung, breast, colon, kidney, head and

neck, hematopoietic and lymphoid, liver and gastric cancer)

(Figure 1, bottom right). The 164 cancer gene expression

datasets were initially collected from the Gene Expression

Omnibus (44) and ArrayExpress (45). Among the 164

datasets, 40 were then selected based on the following cri-

teria: (i) each dataset should include more than 10 normal

and 10 cancer samples and (ii) each cancer type should in-

clude at least two datasets (Supplementary Table S1).

In each dataset, DEGs between cancerous and normal

samples were identified using the integrative statistical

method previously reported (P< 0.05) (17), as described in

Materials and Methods. For each cancer type, we then com-

puted representative P values of the genes as the combined

P values of the genes in multiple datasets of the cancer type

(19) using Stouffer’s method (Materials and Methods). Also,

to summarize expression changes in the 10 types of cancers,

the representative log2-fold-changes of the genes were com-

puted as their averaged log2-fold-changes. For comparative

analysis of ARS/AIMPs and their interacting CAGs, we iden-

tified 1874 non-CAGs, as negative controls, which were not

included in the cancer gene index and also showed no signifi-

cant cancer-associated alterations in gene expression profiles

(i.e. combined P< 0.05 in none of the 10 types of cancers).

The comparison of the representative log2-fold-changes

revealed that ARS/AIMPs and their first and second

neighbors in the 10 types of cancers showed significant

changes in their expression levels, compared with non-CAGs

(Figure 2).

Genomic data of ARS/AIMPs and their interacting CAGs

Recently, a number of studies have showed that somatic

mutations and CNVs were associated with cancer-related

pathophysiological processes (40–43, 46). Thus, to under-

stand cancer-related alterations of ARS/AIMPs and their

interactors in somatic mutations and CNVs, we first ob-

tained CNV data for nine cancer types (skin, gastric, colon,

head and neck, hematopoietic and lymphoid, lung, bone,

soft tissue and uterine) from CanGEM (47) and also from

Tumorscape (48) for 14 cancer types (leukemia and breast,

colorectal, esophageal squamous, lung, liver, ovarian,

prostate and renal cancers and medulloblastoma, melan-

oma, myeloproliferative disorder, glioma and sarcoma)

(Figure 1, bottom left; Supplementary Table S2).

Frequencies of gain and loss for each gene in individual

types of cancers were pre-computed as described previ-

ously (47) and stored in IDA. We then obtained somatic

mutations from cancer cell line encyclopedia (CCLE) (49)

and catalog of somatic mutations in cancer for diverse can-

cer types (50). IDA contains a total of 7 09 008 somatic

mutations including missense, indel, frameshift and non-

sense mutations (1452 for ARS/AIMPs, 5 87 125 for their

interacting CAGs and 1 20 431 for non-CAGs).

Using these data, we compared alteration degrees of

CNVs in ARS/AIMPs, first and second neighbor CAGs and

non-CAGs (Figure 3A). ARS/AIMPs and their interactors

showed significant gains and losses of copy numbers in

nine representative cancers, whereas little variation was

observed in non-CAGs. We further examined gains and

losses of ARS/AIMPs using the CNV data obtained from

CCLE. In total, 18 cases of TARS amplifications were

found in lung cancer cells (Figure 3B). High frequencies of

NARS deletions were observed in several cancer types,

such as large intestine, lung and pancreas cancer cells

(Figure 3C). Especially, �23% of esophagus cancer cells

contained NARS copy number deletions.
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Also, we compared somatic mutations of ARS/AIMPs,

first and second neighbor CAGs and non-CAGs (Figure 4).

The CAG neighbors showed relatively higher frequencies of

somatic mutations (average relative frequency¼ 5.3) than

non-CAGs (average relative frequency¼0.35) in all the can-

cer types examined. Interestingly, the mutation rates of

ARA/AIMPs (average relative frequency¼ 0.35) were also

relatively lower than their CAG neighbors, although ARS/

AIMPs showed significant cancer-related alterations in their

expression (Figure 2). Nonetheless, several ARS/AIMPs

showed relatively high frequency of missense/in-frame indel

mutations in several cancer types, such as endometrium and

prostate cancers (average relative frequencies¼ 0.78 and

0.74, respectively). For example, a total of 209 missense/in-

frame indel mutations of ARS/AIMPs were found in endo-

metrium cancers. Especially, among the mutations, nearly

80 missense mutations of MARS, CARS, LARS and EPRS

were found in the endometrium cancers. Also, the same type

of mutations, including both missense and in-frame deletion

mutations of KARS, were observed with relative frequency

of 0.74 in prostate cancers.

Proteomic data of ARS/AIMPs and their interacting CAGs

Post-translation modifications (PTMs) of ARS/AIMPs and

their interacting CAGs, such as phosphorylation and ubiquiti-

nation, can modulate the interactions of ARS/AIMPs with

CAGs, thereby affecting non-canonical functions of ARS/

AIMPs in disease-related cellular processes. For example,

EPRS, KRS and AIMP2 are dissociated from MSCs by phos-

phorylation and regulate inflammation, metastasis and apop-

tosis, respectively (51–53). Thus, we collected PTMs of ARS/

AIMPs and their interactors, as well as their protein abun-

dances, in diverse types of cancers (Figure 1, bottom right).

First, protein abundance data in 20 cancer types (brain,

breast, cervical, colorectal, esophageal, gall bladder, gastric,

head and neck, liver, lung, ovarian, pancreatic, prostate,

renal, skin, testicular and thyroid cancers and leukemia,

lymphoma and sarcoma) were obtained from dbDEPC (54).

Second, PTM data of ARS/AIMPs and their interactors were

obtained from phosphorylation site database (PHOSIDA)

and PhosPhoSitePlus (55, 56). A total of 375 phosphoryl-

ations for ARS/AIMPs were found in several cancer cells

including cervical, breast and colorectal cancer and leukemia

cells. Additionally, IDA includes 84 acetylations, 410 ubiqui-

tinations, 4 methylations and 1 sumoylation for ARS/AIMPs.

Analytical tools of ARS/AIMPs and their

interactors in IDA

Web-based search and exploration tools

The goal of IDA is to provide not only molecular and inter-

action data of ARS/AIMPs but also analytical tools that

Figure 2. Differential expression of ARS/AIMPs and their neighbors. IDA provides a functionality for exploration of differential expression of the four

groups of the genes in the 10 cancer types: (i) ARS/AIMPs, (ii) and (iii) their first and second neighbor CAGs and (iv) non-CAGs. The color bar for each

group shows sorted log2-fold-changes of the genes in the group. Compared with non-CAGs, the ARS/AIMPs and their interactors showed more sig-

nificant differential expression in the 10 cancer types. The t-test was used to compute P-values representing the significances of the differences be-

tween the mean log2-fold-change values of ARS/AIMPs and non-CAGs. Color bar denotes the gradient of log2-fold-changes of the genes. HLT:

hematopoietic and lymphoid tissue.
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generate network models and then network-driven hypoth-

eses for understanding of cancer-associated functions of

ARS/AIMPs. IDA provides a search tool (‘Detailed search

about ARS’ in Figure 5, center) that allows us to explore

the collected genomic, transcriptomic and proteomic data

for ARS/AIMPs. For example, when the genomic data for

DARS were searched, the search output shows the gen-

omic, proteomic and interaction data of DARS in IDA.

The genomic data showed the gains of copy numbers in

soft tissue cancers, but losses of copy numbers in gastric,

head and neck and soft tissue cancers (Figure 5, top right).

The proteomic data showed the five types of PTMs for

DARS (phosphorylation, acetylation, methylation, ubiqui-

tination and sumoylation), as well as the PTM sites

(Figure 5, middle right): For example, the phosphorylation

data showed five serine (S112, S146, S238, S249 and

S427), three tyrosine (Y24, Y239 and Y245) and one

threonine (T52) phosphorylation sites. Further detailed

information of the PTMs can be obtained through the links

to the original PTM databases.

Moreover, another search tool (‘ARS-CAG interactome

search’ in Figure 5, center) allows us to explore the CAGs

with which ARS/AIMPs interact. For example, the search

output for KARS showed a list of CAGs interacting with

Figure 3. Alterations of copy numbers of ARS/AIMPs and their neighbors. (A) Average frequencies of gains (amplification) and losses (deletion) of

copy numbers in the four groups of the genes in nine representative cancer types using CNV data in CanGEM: (i) ARS/AIMPs, (ii) and (iii) first and se-

cond neighbor CAGs and (iv) non-CAGs. The frequency was defined by the number of amplification cases for the genes in each group divided by the

total number of the genes in the group. (B) Amplification frequencies of ARS/AIMPs in lung cancer cell lines using CNV data in CCLE. (C) Heat map

showing deletion frequencies of ARS/AIMPs in 16 different types of cancer cell lines using CNV data in CCLE. Color bar shows the gradient of deletion

frequency. CNS, central nervous system; HLT, hematopoietic and lymphoid tissue.
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KARS (Figure 5, bottom right). This list of interactors of

KARS can be used to study their KRS-related functions

and pathological implications such as cell

migration (MAPK11/12/14) (52, 57), immune response

(MITF) (57) and Amyotrophic Lateral Sclerosis (SOD1)

(58, 59), supporting the utility of the interactors of ARS/

AIMPs. Finally, the first and second CAG neighbors of

ARS/AIMPs can be explored using the links to the list of

interacting CAGs or the search tool for the

CAGs (‘Detailed search about CAG’ in Figure 5, center).

All the genomic and proteomic data of the CAGs can be

explored, similar to those of ARS/AIMPs shown in

Figure 5. Finally, the interactome of a list of genes with the

molecules in IDA can be obtained using ‘Cancer-

associated network’ in ‘Analysis’ of the ‘Network’ menu

after entering the symbols of the genes (‘Select All’ group

option).

Cancer-associated network models for ARS/AIMPs

An important goal of the tools in IDA is to develop cancer-

associated network models for ARS/AIMPs by integrating

both transcriptomic and interaction data and to generate

hypotheses for mechanisms of ARS/AIMPs in cancer-

related pathophysiological processes based on the network

models. To this end, IDA first provides the tools to develop

cancer-associated network models for ARS/AIMPs

(‘Cancer-associated network’ in ‘Analysis’ of ‘Network’

menu). The network model was generated using ARS/

AIMPs and their first neighbor CAGs and then visualized

using Cytoscape (60) (Figure 5, top left). The nodes (ARS/

Figure 4. Somatic mutations of ARS/AIMPs and their neighbors. Average numbers of somatic mutations in the four groups of the genes in 16 cancer

types using somatic mutation data in CCLE: (i) ARS/AIMPs, (ii) and (iii) first and second neighbor CAGs and (iv) non-CAGs. The mutations were cate-

gorized into the following groups: (i) missense/in-frame InDels, (ii) frameshift, (iii) nonsense, (iv) gain of sequence, (v) complex, (vi) silent and (vii)

unknown mutations. Color bar denotes the gradient of the number of each group of mutations.
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AIMPs and their first neighbor CAGs) in the network

model can be organized into functional modules in each of

which the nodes have the same gene ontology biological

processes (Figure 6A; ‘Cancer-associated network of ARS/

AIMPs and first neighbor CAGs’ in ‘Output’ of ‘Network’

menu). The nodes in the network model can have different

degrees of contributions to cancer-related pathophysio-

logical processes. To represent the different degrees of

Figure 6. Evolutionarily conserved motifs in the ARS/AIMP network model. (A) ARS/AIMPs cancer network model showing 23 ARS/AIMPs and 123

first neighbor CAGs. Colored nodes represent ARS/AIMPs (dark orange) and their first neighbors (orange). Node sizes represent the average deregu-

lation scores in the 10 cancer types (Materials and Methods). Nodes were grouped, such that the nodes involved in the same cellular process, accord-

ing to gene ontology biological process annotations, belonged to a functional module denoted by the orange background. (B) Two key functional

modules identified using the random walk-based method. (C) Evolutionarily conserved motifs in the ARS/AIMP network models constructed in

human, fly, bacteria and yeast. The motifs conserved between human and the other three species were shown.
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node contributions to the cancer-related processes, we esti-

mated deregulation score indicating representative degree of

deregulation in the 10 cancer types for which gene expression

data were collected (Materials and Methods). The inter-

actions (edges) between ARS/AIMPs and CAGs in the net-

work model can have different degrees of associations with

cancers. To represent the different degree of cancer associ-

ations for each pair of ARS/AIMP and its CAG interactor,

we estimated the co-association score for the interacting pair

that represents the extent of co-deregulation in the 10 cancer

types. The network model can reveal a set of the linked nodes

with high deregulation and co-association scores, which can

be considered as a functional module that can significantly

contribute to cancer-related pathophysiological processes rep-

resented in the network model.

Key functional modules of ARS/AIMPs in the network

model

To understand functions of ARS/AIMPs defined by their

interactions with the CAGs, it is important to identify the

sets of the ARS/AIMP-CAG nodes densely connected

with high deregulation and co-association scores, which

are referred to as key functional modules of ARS/AIMPs.

These modules should include at least one ARS/AIMP

and its interaction with the CAGs to examine cancer-

related functions of ARS/AIMPs. Thus, IDA provides a

random walk-based method to effectively identify the key

ARS/AIMP-CAG functional modules (‘Functional mod-

ules’ in ‘Analysis’ of ‘Network’ menu). This method per-

forms random walks based on the co-association scores

and then identifies a set of the nodes that should include

more than at least one ARS/AIMP with high residence

probabilities after a certain period of time. For the net-

work model in Figure 6A, the random walk-based

method generated two key functional ARS/AIMP-CAG

modules (Figure 6B; ‘Functional modules for cancer-asso-

ciated network of ARS/AIMPs and first neighbor CAGs’

in ‘Output’ of ‘Network’ menu). These modules (GARS

and MARS subnetworks) show the links of the ARSs to

(i) NFKB pathway through their interactions with

NFKB2, IKBKG/E and MCC (61, 62) and (ii) transcrip-

tional regulators (ELF3 and BRF2). This suggests poten-

tial roles of GARS and MARS in NFKB signaling and

transcriptional regulation. Furthermore, these modules

show the possible association of the ARSs in the immune

response (HLA-B and TRAF6) and cell migration (CD44

and MCC).

Evolutionary analysis of the cancer-associated network for

ARS/AIMPs

In addition to the random walk-based method mentioned

above, evolutionary analysis of the cancer-associated

network for ARS/AIMP can be applied to the network

model to identify core regulatory motifs of ARS/AIMPs,

assuming that the core regulatory motifs should be con-

served across different species. To this end, we collected

PPIs in four different species, Escherichia coli,

Saccharomyces cerevisiae, Drosophila melanogaster and

Homo sapiens (Supplementary Table S3) and then recon-

structed ARS/AIMP network models using first and second

neighbors of ARS/AIMPs in individual species. Next, we

identified evolutionarily conserved network motifs recur-

ring in the network models of individual species

(‘Evolutionarily conserved motifs’ in ‘Analysis’ of

‘Network’ menu). Among the identified motifs, we focused

on the ones conserved in human to understand roles of

ARSs in human networks (‘Evolutionarily conserved

motifs of ARS/AIMPs and first and second neighbor

CAGs’ in ‘Output’ of ‘Network’ menu). The identified

motifs were mostly conserved in two species, Yeast-

Human (4 motifs), Fly-Human (4 motifs) and Bacteria-

Human (2 motifs) (Figure 6C).

These evolutionarily conserved motifs suggest that the

components in the motifs may form functional complexes.

For instance, the motif consisting of MARS, AIMP1 and

QARS was suggested to be conserved among yeast, fly and

human. These three proteins are the known components

forming MSC with other ARSs in human (63). In the

human form, the structural or functional association

AIMP1 with QARS and MARS were experimentally dem-

onstrated (4, 64). The primitive complex form was found

in yeast consisting of MARS, Acr1p (homolog of AIMP1)

and EARS (65) and the functional significance of this com-

plex was studied in-depth (66). The potential interactions

among these three proteins were also suggested in fly (67),

indicating that functional implications of the fly com-

plex can be obtained from the in-depth studies

conducted in other organisms. Thus, the conserved

motif analysis can be useful to predict how these ARS-con-

taining macromolecular complexes have evolved from uni-

cellular to multicellular organisms in their structure and

function.

The nodes in the conserved motifs are involved in a

broad spectrum of cellular processes, including cell cycle

and DNA repair, protein modification (e.g. neddylation)

and localization, signal transduction and response to stress

(e.g. NFKB pathway). These results indicate that ARSs can

play potential roles in these processes. Interestingly, the

link of ARS/AIMPs to NFKB pathway was predicted by

both the random walk-based method and the evolutionary

analysis of ARS/AIMP networks. Many motifs

conserved in higher organisms, as well as a broad spectrum

of cellular processes associated with these motifs, are con-

sistent to previous findings that they can acquire
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evolutionarily new functions by the addition of new do-

mains (68–70).

Conclusions

Several studies have discovered diverse implications of

ARS/AIMPs in human diseases. However, there is still the

lack of data resources and tools that can be used to analyze

potential functional roles of ARS/AIMPs in human

diseases. IDA was developed to provide a broad spectrum

of genomic (somatic mutations and CNVs), transcriptomic

(mRNA expression), proteomic (protein abundance and

PTMs) and interactome data (PPIs) from 25 existing DBs

(Figure 1) for ARS/AIMPs and their interactors. However,

IDA is not simply assemblies of information available in

the 25 DBs that provide intact or federated links to the ori-

ginal data. The collected data were reprocessed, designed

and integrated in such a way to facilitate the integrative

analyses (analyses of cancer-related changes in gene and

protein abundances and genomic variations, network ana-

lysis, functional modules and evolutionary motif analysis)

and explorative analyses (navigation and visualization of

the information) of cancer-related ARS data. When cancer-

related alterations in abundances and genomic variations

are discovered for ARS/AIMPs and/or their interactors,

IDA can be used to evaluate whether the discovery was fur-

ther investigated or not. Furthermore, IDA provides a bat-

tery of analytical tools for the integrative analyses and also

the outputs from the integrative analyses. The outputs (e.g.

network modules) can be used to generate hypotheses for

functions of ARS/AIMPs or mechanisms for such functions

in cancers, thereby providing new insights into cancer-

related functions of ARS/AIMPs. Currently, IDA provides

cancer-related data only and is thus limited to investigation

of association of ARS/AIMPs with cancers. However, it

will be expanded to include genomic, transcriptomic and

proteomic data collected from metabolic and neurological

diseases. Recently, a number of studies have shown im-

portant roles of ARS/AIMPs in pathogenesis of diverse dis-

eases. Therefore, IDA can serve as a comprehensive

resource of data and tools for studies of ARS/AIMPs that

can facilitate elucidation of unknown functions of ARS/

AIMPs in disease pathogenesis.
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