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a b s t r a c t

Lysyl-tRNA synthetase (KRS) interacts with the laminin receptor (LR/RPSA) and enhances laminin-
induced cell migration in cancer metastasis. In this nuclear magnetic resonance (NMR)-based study,
we show that the anticodon-binding domain of KRS binds directly to the C-terminal region of 37LRP,
and the previously found inhibitors BC-K-01 and BC-K-YH16899 interfere with KRS–37LRP binding.
In addition, the anticodon-binding domain of KRS binds to laminin, observed by NMR and SPR.
These results provide crucial insights into the structural characteristics of the KRS–LR interaction
on the cell surface.

Structured summary of protein interactions:
KRS-ABD binds to 37LRP by surface plasmon resonance (View interaction)
KRS-ABD and 37LRP bind by nuclear magnetic resonance (1, 2, 3)
37LRP and KRS-ABD bind by molecular sieving (View interaction)
KRS-ABD and laminin peptide bind by nuclear magnetic resonance (View interaction)

� 2014 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction was recently reported [3–5]. In higher eukaryotic organisms,
Aminoacyl-tRNA synthetases (ARSs) play a central role in
protein synthesis by catalyzing the aminoacylation of tRNAs with
corresponding amino acids. Besides their canonical function in pro-
tein synthesis, mammalian ARSs play additional roles, performing
diverse cellular functions [1,2]. The so-called non-canonical
functions of ARSs are often performed by additional domains,
which are not necessarily involved in the catalytic activities of
the enzyme. The pathophysiological involvement of ARSs in
various human diseases, including cancer and immune diseases,
almost half of all cellular tRNA synthetases form a multi-tRNA syn-
thetase complex (MSC) with three non-enzymatic cofactors [6,7].
The association and dissociation of these MSC components is
considered to be one of the underlying mechanisms that drive
the non-canonical functions of ARSs [8–11].

Among the ARSs, lysyl-tRNA synthetase (KRS) is a multi-func-
tional enzyme, which, in addition to its primary function of amino-
acylation of lysine onto the cognate tRNA, has various non-
canonical functions [12–17]. KRS is secreted from intact human
cells in response to tumor necrosis factor a (TNF-a) stimulation
and enhances macrophage migration [17], and KRS expression
and its association with the assembly mechanism of human immu-
nodeficiency virus type 1 (HIV-1) is responsible for HIV-1 infectiv-
ity [18]. Furthermore, KRS is a major source of diadenosine
tetraphosphate (Ap4A) in immunologically activated mast cells,
and via translocation into the nucleus, KRS controls the expression
of microphthalmia-associated transcription factor (MITF)-
inducible genes in allergic responses [12].

KRS was recently shown to induce cancer cell migration
through its interaction with the 67-kDa laminin receptor (67LR)
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[15]. LR/RPSA (HGNC: 6502) is a non-integrin cell-surface receptor
with a high affinity for laminin and is known to be a key player in
tumor invasion and metastasis [19]. LR/RPSA has a putative trans-
membrane segment, and the C-terminal region of LR/RPSA interact
with the laminin in the extracellular matrix [20]. 67LR is produced
in the cell by dimerization and fatty acid acylation of the 37-kDa
cytosolic laminin receptor precursor (37LRP), but it is not clear
whether 67LR is a homodimer or a heterodimer with a protein
related to galectin-3 [20–22]. In laminin signaling, KRS is
phosphorylated at Thr52 by p38 mitogen-activated protein kinase
(MAPK), after which KRS translocates to the plasma membrane.
The interaction of KRS with 67LR enhances the membrane stability
of 67LR, which in turn results in an increase in metastasis [15].

The three-dimensional (3D) structures of KRS (residues 70–581)
and N-terminal domain of 37LRP (residues 1–220) have been
solved by X-ray crystallography [9,10,23]. The structure of the
membrane-embedded 67LR, however, and the precise mechanism
underlying the formation of 67LR is not clear [20]. The observation
that 37LRP and 67LR share several functions, in particular the bind-
ing of laminin, suggests that their structures and folding states are
rather similar [24]. Co-immunoprecipitation and pull-down assays
have shown the interaction between KRS and LR/RPSA to occur via
the N-terminal region of KRS (residues 1–219) and the transmem-
brane and extracellular domain (residues 88–295) of LR/RPSA [15].
A structural analysis of human KRS indicated that residues 72–207
form the anticodon-binding domain, and residues 221–576 form
the catalytic domain (PDB 3BJU) [9]. To further understand the
structural characteristics of the interaction between KRS and LR/
RPSA, we investigated the interaction between the N-terminal
region of KRS (residues 1–207) and full-length 37LRP (1–295)
using nuclear magnetic resonance (NMR). The interaction was
assessed in the presence and absence of a laminin peptide
(DPGYIGSR). These studies provide critical insight into the
structural characteristics of the KRS–LR interaction in the cell
membrane.

2. Materials and methods

Detailed description of sample preparation and supporting
analyses can be found in the Supplemental methods.

2.1. NMR spectroscopy

To identify the NMR signals from the anticodon-binding domain
and the N-terminal extension of KRS, 1H–15N transverse relaxation
optimized spectroscopy (TROSY) experiments for 0.2 mM 15N-
labeled KRS-Nex (residues 1–72), KRS-ABD (residues 72–207),
and KRS-DC (residues 1–207) were measured and analyzed. The
backbone assignments of 13C- and 15N-labeled KRS-Nex and KRS-
ABD were performed using conventional triple-resonance, HNCA,
HN(CO)CA, HNCACB, CBCA(CO)NH, HNCO, HN(CA)CO, HBHANH
and HBHA(CO)NH experiments. Data were processed with NMR-
pipe [25] and analyzed with CCPN2.1.5 [26]. All NMR spectra were
recorded using an Avance 600 MHz NMR spectrometer equipped
with a triple-resonance probe (Bruker, Germany).

For the binding study of KRS, a series of 1H–15N TROSY experi-
ments of 0.2 mM 15N-labeled KRS-DC (residues 1–207) with its
binding partners were carried out in a buffer containing 20 mM
HEPES (pH 7.0), 100 mM NaCl, 1 mM phenylmethylsulfonyl fluo-
ride (PMSF) and 1 mM DTT at 30 �C as following. To characterize
the interaction between KRS and LR, glutathione S-transferase
(GST)-fused full length 37LRP (GST-LR) was added serially to final
concentrations of 0.02, 0.03, 0.06, 0.10, 0.12, 0.16 and 0.20 mM to
0.2 mM 15N-labeled KRS-DC. 0.2 mM free GST was used instead
of GST-LR for control experiment. To identify the binding region
of LR for KRS binding, small ubiquitin-like modifier (SUMO)-fused
37LRP fragments (residues 1–295: SUMO-LRfull; residues 1–86:
SUMO-LR1–86; residues 1–209: SUMO-LR1–209; residues 86–295:
SUMO-LR86–295; and residues 102–295: SUMO-LR102–295; residues
210–295: SUMO-LR210–295) were constructed and expressed. The
SUMO tag was cleaved off for the LR1–209, LR102–295, LR210–295 and
LRfull before NMR study. Then, 0.2 mM of each tag-free LRfull,
LR1–209, LR102–295, LR210–295, SUMO-LR1–86, SUMO-LR86–295, and
SUMO-LR102–295 were added to 0.2 mM 15N-labeled KRS-DC,
respectively (1:1 ratio). To see the effect of laminin peptide,
0.3 mM laminin peptide was added to 0.2 mM 15N-labeled KRS-
DC in the absence and presence of 0.06 mM GST-LR. For the bind-
ing of thioredoxin-fuse 37LRP (TRX-LR) with KRS-ABD, 0.2 mM
TRX-LR was added to 0.2 mM 15N-labeled KRS-ABD (residues
72–207) in the presence of 20 mM arginine.

2.2. Modeling of full length KRS

Since the X-ray structure of the KRS anticodon-binding and cat-
alytic domains (residues 70–579) has been reported (PDB: 3BJU),
the full-length KRS structural model was prepared from two tem-
plate structures: the N-terminal (residues 1–72) structure was
derived from chemical shift data with CYANA2.1 (http://
www.las.jp/english/products/cyana.html) and the X-ray structure
of the anticodon-binding and catalytic domains was used as tem-
plates for the rest of the protein. For the CYANA calculation, angu-
lar restraints from TALOS (http://spin.niddk.nih.gov/bax/ software/
TALOS+) based on 1H, 13Ca, 13Cb, 13C0 chemical shift data of KRS-
Nex were used. Modeling was performed using Modeller4 (http://
salilab.org/modeller), and the structure quality was accessed with
RAMPAGE, a public domain webserver (http://mordred.bioc.cam.
ac.uk/~rapper/rampage.php).

3. Results and discussion

3.1. Identification of NMR signals from the flexible N-terminal
extension and anticodon-binding domain

We have already reported that the N-terminal region (1–219) of
KRS binds with 37LRP and 67LR in vitro [15]. Human KRS has three
functional domains: an N-terminal extension (residues 1–72), an
anticodon-binding domain (residues 72–207), and a catalytic
domain (residues 220–597) (Supplemental Fig. 1A). Only mamma-
lian KRS contains a flexible N-terminal extension, which provides
additional tRNA binding affinity [27]. In order to identify the
NMR signals that correspond to each region of the N-terminal
extension and anticodon-binding domain, we prepared purified
KRS fragments containing the residues 1–72 (KRS-Nex), 72–207
(KRS-ABD), and 1–207 (KRS-DC) (Supplemental Fig. 1B and D)
and performed 1H–15N TROSY NMR experiments (Supplemental
Fig. 1E and F). Interestingly, most of the NMR signals of KRS-Nex
and KRS-ABD (Supplemental Fig. 1F, blue and red color, respec-
tively) were closely matched with the signals from the spectrum
of KRS-DC (Supplemental Fig. 1E and black color of 1F). This result
is indicative of independent motion between the residues corre-
sponding to the N-terminal extension and the anticodon-binding
domain in the KRS-DC protein, showing that the two domains do
not interact with each other. Thus, we were able to identify the
NMR signals from these individual domains separately. Next, the
backbone resonances of KRS-Nex and KRS-ABD were assigned
using conventional triple-resonance NMR experiments (Supple-
mental Fig. 2A and B, BMRB Accession Nos. 19993 and 19995,
respectively). Using this information, an NMR binding study of
KRS and GST-LR was performed to allow the domain of KRS respon-
sible for the interaction to be identified.
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Fig. 1. Selective binding of 37LRP to the KRS anticodon-binding domain. 1H–15N TROSY NMR spectra of 15N-labeled KRS-DC with different ratios of GST-LR (A–D). (A) 1H–15N
TROSY spectrum of 0.2 mM KRS-DC (black). (B) 1H–15N TROSY spectrum of 0.2 mM 15N-labeled KRS-DC with 0.02 mM GST-LR (KRS-DC:GST-LR = 1:0.10) (purple). (C) 1H–15N
TROSY spectrum of 0.2 mM 15N-labeled KRS-DC with 0.06 mM GST-LR (KRS-DC:GST-LR = 1:0.30) (blue). (D) 1H–15N TROSY spectrum of 0.2 mM 15N-labeled KRS-DC with
0.12 mM GST-LR (KRS-DC:GST-LR = 1:0.60) (green). (E) 1H–15N TROSY spectrum of 0.2 mM 15N-labeled KRS-DC with 0.2 mM free GST (KRS-DC:GST = 1:1) (black). (F) 1H–15N
TROSY spectrum of 0.2 mM 15N-labeled KRS-DC with 0.2 mM tag-free LRfull (KRS-DC:LRfull = 1:1) (red). (G) Overlay of the 1-D cross-sections of the 1H–15N TROSY spectra at
121.42 ppm (15N) of different ratios of KRS-DC:GST-LR (KRS-DC [black], KRS-DC:GST-LR = 1:0.10 [purple], KRS-DC:GST-LR = 1:0.30 [blue], KRS-DC:GST-LR = 1:0.60 [green]).
(H) Overlay of the 1-D cross-sections of 1H–15N TROSY spectra at 113.61 ppm (15N) of different ratios of KRS:GST-LR (KRS-DC [black], KRS-DC:GST-LR = 1:0.10 [purple], KRS-
DC:GST-LR = 1:0.30 [blue], KRS-DC:GST-LR = 1:0.60 [green]). (I) Schematic diagram of the functional domains in human KRS. KRS has three functional domains: an N-
terminal extension (KRS-Nex, residues 1–72), an anticodon-binding domain (KRS-ABD, residues 72–207), and a catalytic domain (KRS-C, residues 207–597). Residues 1–207
were termed KRS-DC. Red line denotes that the KRS-ABD is responsible for the 37LRP binding.
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3.2. The anticodon-binding domain of KRS is responsible for the
interaction with 37LRP

To investigate the mechanism of binding between KRS and LR,
an NMR titration experiment was performed with KRS-DC and
GST-LR. We monitored a series of 1H–15N TROSY spectra of
0.2 mM 15N-labeled KRS-DC to which GST-LR was added to give
KRS-DC:GST-LR molar ratios of 1:0.10, 1:0.15, 1:0.30, 1:0.50,
1:0.60, 1:0.80, and 1:1.00. The NMR signals from the anticodon-
binding domain of KRS (residues 72–207) were found to be
selectively and quantitatively decreased by binding with GST-LR,
while the NMR signals from the N-terminal extension were only
minimally affected (Fig. 1A–D). Free GST did not affect the NMR
signals of KRS (Fig. 1E), and the addition of the tag-free 37 kDa
LRP (tag-free LRfull) showed the similar result to that of GST-LR
(Fig. 1F). Fig. 1G shows representative signals (corresponding to a
residue Leu 115) from the anticodon-binding domain, indicating
a dramatic decrease in the intensity upon titration. This dose-
dependent decrease in the signal is thought to be a phenomenon
associated with the formation of large-molecular weight complex
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upon the binding of GST-LR and KRS-DC, or to be caused by chem-
ical exchanges between the bound and unbound states. This indi-
cates that the anticodon-binding domain of KRS is responsible for
the binding to 37LRP (Fig. 1I). When the concentration ratio of
KRS:GST-LR reached 1:0.6, most of the signals from the antico-
don-binding domain disappeared. In contrast, for KRS:GST-LR
ratios of up to 1:0.6, the intensity of the NMR signals from
KRS-Nex (residues 1–72) were still at more than half of the original
levels (Fig. 1H). Some signal broadening for KRS-Nex was observed,
possibly because of the slow motion of the complex when
compared to the free KRS-DC.

Purification of the complex of KRS-ABD and 37LRP was not
successful due to the instability and aggregation of the complex.
Although the individual solutions of KRS-ABD and TRX-LR were
soluble in the experimental conditions, the binding of KRS-ABD
and TRX-LR induced co-precipitation in various buffer conditions
of neutral pH and low salt concentrations under 400 mM NaCl
(Supplemental Fig. 5). The addition of 20 mM arginine solubi-
lized the KRS-ABD and TRX-LR complex (Supplemental Fig. 5C),
allowing for NMR measurements of 15N-labeled KRS-ABD with
TRX-LR (1:1 ratio) to be carried out. The resulting spectra
showed that the NMR signals of KRS-ABD completely disap-
peared following the addition of TRX-LR (Supplemental Fig. 3A
and B). We further performed size exclusion chromatography
to obtain the KRS–37LRP complex protein. We obtained some
complex fractions eluted near void volume (Supplementary
Fig. 6), although the proteins were degraded significantly. These
findings further demonstrate that the anticodon-binding domain
of KRS binds to 37LRP which results in signal broadenings in
NMR experiments.



A B
O O

S
N

O
S

N

O
F

CF3

N
N

OH N
N

OHF

CF3

O

OH OHF

O O

BC-K-01 BC-K-YH16899BC-K-01 BC-K-YH16899

C DKRS-ΔC                                          KRS-ΔC : GST-LR = 1 : 0.3KRS-ΔC                                          KRS-ΔC : GST-LR = 1 : 0.3

m
)

N
 (p

pm
15

N
 (

1H (ppm) 1H (ppm)

E FKRS-ΔC : GST-LR : BC-K-01 
= 1 : 0.3 : 4

KRS-ΔC : GST-LR : BC-K-YH16899 
= 1 : 0.3 : 4= 1 : 0.3 : 4 = 1 : 0.3 : 4

pm
)

N
 (p

pm
15

N

1H (ppm) 1H (ppm)1H (ppm) 1H (ppm)

Fig. 3. Inhibitors compete with 37LRP at the KRS–LR binding interface. (A, B) Chemical structure of the inhibitor BC-K-01 (A) and its derivative BC-K-YH16899 (B). (C) 1H–15N
TROSY spectrum of 15N-labeled 0.2 mM KRS-DC (black). (D) 1H–15N TROSY spectrum of 0.2 mM 15N-labeled KRS-DC with 0.06 mM GST-LR (black). (E) 1H–15N TROSY
spectrum of 0.2 mM 15N-labeled KRS-DC with 0.06 mM GST-LR and 0.8 mM BC-K-01 (KRS-DC:GST-LR:BC-K-01 = 1:0.3:4) (blue). (F) 1H–15N TROSY spectrum of 0.2 mM 15N-
labeled KRS-DC with 0.06 mM GST-LR and 0.8 mM BC-K-YH16899 (KRS-DC:GST-LR:BC-K-YH16899 = 1:0.3:4) (red).

H.Y. Cho et al. / FEBS Letters 588 (2014) 2851–2858 2855
3.3. The C-terminal region of 37LRP binds to the KRS
anticodon-binding domain

Although the hypothetical model of LR with transmembrane
region has been proposed by Castronovo et al. [28], this model
has not been validated experimentally. Recently, the crystal struc-
ture of 37LRP has been reported for the N-terminal 220 residues,
and this structure is ab flavodoxin-like fold comprising of
5–209 a.a. residues. In addition, ribosomal N-terminal region
(residues 1–209) corresponds to exon 2–5 and metazoan-specific
C-terminal region (residues 210–295) correspond to exon 6–7 sug-
gest that these regions may be folded independently. Considering
these possibilities, and to identify the domain of 37LRP responsible
for the binding to KRS, we expressed and purified the fragments of
37LRP (residues 1–295, LRfull; residues 1–86, LR1–86; residues 1–
102, LR1–102; residues 1–209, LR1–209; residues 86–295, LR86–295;
residues 102–295, LR102–295; residues 210–295, LR210–295)
(Fig. 2G). All these constructs were expressed as SUMO-fused form
and the SUMO tag was cleaved and removed during purification.
Among them we could not purify the LR1–102 because it was not
soluble.

A series of NMR spectra of 15N-labeled KRS-DC with various
37LRP fragments (1:1 M ratio) were measured. As shown in
Fig. 2A–C, selective signal broadening for the residues in the KRS
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anticodon-binding domain was observed in experiments with
LR102–295 and LR210–295 (Fig. 2B and C), while that of LR1–209 did
not show the selective broadening (Fig. 2A). Interestingly, the
result in Fig. 2B is very similar to those of tag-free LRfull (Fig. 1F)
and GST-LR (Fig. 1D), which indicates the C-terminal region of
37LRP is responsible for the binding to KRS. Addition of LR210–295

(Fig. 2C) showed weaker effect, but it still shows the selective sig-
nal broadening for anticodon-binding domain. For LR1–86, we used
SUMO-tagged form due to its instability after SUMO cleavage
(Fig. 2D). To compare with this SUMO-tagged LR1–86, we also pres-
ent the NMR binding experiments with SUMO-LR86–295 and SUMO-
LR102–295 (Fig. 2E and F), respectively. While SUMO-LR86–295
(Fig. 2E) and SUMO-LR102–295 (Fig. 2F) showed similar pattern to
those of tag-free LRfull (Fig. 1F) and GST-LR (Fig. 1D), SUMO-
LR1–86 did not affect the NMR spectrum of KRS-DC. We were thus
able to conclude that the anticodon-binding domain of KRS binds
to the C-terminal region of 37LRP (Fig. 2H).

The Kd value of the interaction between KRS-DC and tag-free
LRfull, as measured by surface plasmon resonance (SPR), was
40.4 lM (Supplemental Fig. 4A and B). In our setting, the KRS bind-
ing to 37LRP in vitro may be rather weaker than that in physiolog-
ical condition, which is in 67LR form. In physiological condition,
some other factors such as the laminin network and integrin mol-
ecules may also affect the KRS–LR binding resulting in the increase
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of the affinity or stability of the complex. Notably, the binding
affinity between KRS-DC and tag-free LRfull is weaker than the
binding of BC-K-01 or BC-K-YH16899 to the KRS in our previous
report [29], and thus these compounds appear to easily disrupt
the KRS–37LRP interaction. These compounds are known to inhibit
the interaction of KRS with LR and to suppress metastasis [29].
Intriguingly, the NMR signals of KRS-DC perturbed by the addition
of GST-LR were recovered upon addition of the compounds BC-K01
or BC-K-YH16899 (Fig. 3). This result provides supporting evidence
that these compounds directly inhibit the binding between KRS
and 37LRP in vitro. These findings are in agreement with our pre-
vious report regarding the inhibitory effects of these compounds
on the association between KRS and LR.

3.4. KRS interacts with both 37LRP and laminin

Laminin is a major protein in the basal lamina of most cells and
tissues and plays a major role in cell migration and adhesion [20].
A laminin B1-derived peptide, DPGYIGSR, is known to be a func-
tional motif that interacts with 67LR and that inhibits tumor
growth and metastasis [30,31]. To determine whether this laminin
peptide binds with KRS N-terminal region, we measured 1H–15N
TROSY spectra of 15N KRS-DC in the presence and absence of lam-
inin peptide (DPGYIGSR). To our surprise, the addition of laminin
peptide induced selective chemical shift perturbations of the KRS
signals. The residues for which significant perturbation was
observed include K111, Y112, S113, L115, L121, and H171 in
anticodon-binding domain (Fig. 4A). To confirm this KRS-laminin
binding takes place with full functional proteins, an SPR experi-
ment with chip-bound full-length laminin exposed to increasing
the concentration of KRS66–579 was performed. KRS66–579 construct
containing anticodon-binding and catalytic domains was used due
to the instability of full length KRS1–597. We found that KRS66–579

binds to full-length laminin with Kd value of 8.9 lM. (Supplemen-
tal Fig. 4C and D).

Then we added the laminin peptide into the KRS and 37LRP
mixture to see whether the laminin peptide affect the binding of
KRS to 37LRP or not. The addition of a molar excess of laminin pep-
tide to the 15N-labeled KRS-DC and GST-LR mixture (KRS-DC:GST-
LR:laminin peptide = 1:0.3:1.5) did not influence the linewidth of
the KRS-DC signals significantly in 1H–15N TROSY spectra
(Fig. 4D and E); rather, it retains chemical shift perturbations of
the KRS signals by the laminin peptide (Fig. 4F). This result indi-
cates that laminin peptide does not interfere the binding of KRS
to 37LRP, and also 37LRP does not interfere of the KRS binding to
laminin peptide.

We mapped the perturbed signals on the surface of KRS-ABD
with respect to the binding site for BC-K-YH16899 (Fig. 4B) [29].
Interestingly, the binding surface of KRS to laminin peptide is dis-
tinct from that of BC-K-YH16899, which suggests that KRS can bind
simultaneously to both LR and laminin at the cell membrane, and
that the binding of laminin to KRS does not interfere with the bind-
ing of LR to KRS.

4. Conclusion

NMR signals from the N-terminal extension and anticodon-
binding domain in the KRS-DC protein were identified, and were
found to closely match those from the individual domains,
indicating that the two domains have independent motions. In
addition, it was shown that the anticodon-binding domain of KRS
is responsible for the interaction with the C-terminal region of
LR, and this interaction is inhibited by the anti-metastasis
compounds BC-K-01 and BC-K-YH16899. Beside the interaction
with LR, KRS-DC binds to the laminin-derived peptide DPGYIGSR
using the distinct surface from that of the inhibitor binding. This
interaction was confirmed by the SPR study using the functional
proteins, KRS66–579 and full-length laminin. Together with the
known interaction between laminin and LR, our results revealed
the mechanism underlying the colocalization of KRS and LR on
the cell surface, which in turn results in an increase in LR-mediated
cancer cell migration and metastasis.
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