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Abstract

Background: Anticancer therapies that target single signal transduction pathways often fail to prevent proliferation of
cancer cells because of overlapping functions and cross-talk between different signaling pathways. Recent research has
identified that balanced multi-component therapies might be more efficacious than highly specific single component
therapies in certain cases. Ideally, synergistic combinations can provide 1) increased efficacy of the therapeutic effect 2)
reduced toxicity as a result of decreased dosage providing equivalent or increased efficacy 3) the avoidance or delayed
onset of drug resistance. Therefore, the interest in combinatorial drug discovery based on systems-oriented approaches has
been increasing steadily in recent years.

Methodology: Here we describe the development of Combinatorial Drug Assembler (CDA), a genomics and bioinformatics
system, whereby using gene expression profiling, multiple signaling pathways are targeted for combinatorial drug
discovery. CDA performs expression pattern matching of signaling pathway components to compare genes expressed in an
input cell line (or patient sample data), with expression patterns in cell lines treated with different small molecules. Then it
detects best pattern matching combinatorial drug pairs across the input gene set-related signaling pathways to detect
where gene expression patterns overlap and those predicted drug pairs could likely be applied as combination therapy. We
carried out in vitro validations on non-small cell lung cancer cells and triple-negative breast cancer (TNBC) cells. We found
two combinatorial drug pairs that showed synergistic effect on lung cancer cells. Furthermore, we also observed that
halofantrine and vinblastine were synergistic on TNBC cells.

Conclusions: CDA provides a new way for rational drug combination. Together with phExplorer, CDA also provides
functional insights into combinatorial drugs. CDA is freely available at http://cda.i-pharm.org.
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Introduction

Advances in in vitro test systems have shifted drug research from

animal studies to target-oriented research [1]. Combining this

process with genomic research, agents specifically targeting unique

proteins related to specific disease have been found. Amongst these

successful stories of targeted agents is the BCR-ABL kinase

inhibitor imatinib (Gleevec; Novartis), which is using for the

treatment of chronic myelogenous leukemia (CML). However, in

such cases, drug resistance arises possibly owing to the diversity of

mutations of the gene encoding BCR-ABL as well as other

pathways on parallel signalling pathways [2]. Despite successes

such as these, many other drug candidates targeting disease-

associated gene products have been found to be inefficient or to

cause severe side effects. So the limitations of the single protein

targeted agent paradigm have come to surface.

Living systems rely on complex signaling pathways to maintain

their performance in the face of various perturbations [3]. This

complexity appears to pose a barrier for anticancer therapies

targeting single signalling pathways. Cancer cells possess compen-

satory mechanisms to overcome perturbations where they occur at

one signalling axis and so therapies targeting only one pathway

can fail in clinical trials due to lack of efficacy, or be overcome by

mutations at an important receptor [4]. Recent research has

identified that in some cases, balanced multi-component therapies

might be better than highly specific single component therapies

[5–7]. These drug combinations are pharmaco-dynamically

synergistic, additive or antagonistic as their effects are greater

than, equal to, or less than the summed effects of individual drugs,
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respectively [8]. These models have garnered interest in the

possibility of effective combinatorial drug discovery based on

systems-oriented approaches [9–13].

Geva-Zatorsky et al. found that protein responses to combinations

of drugs were described accurately by a linear superposition (weighted

sum) of their responses to each drug alone [14]. With this in mind, we

designed a system for multiple signaling pathways targeting combi-

natorial drug discovery using gene expression profile. We assumed

that if there are two different drugs which regulate two different

disease-associated pathways individually, combination of them might

be effective unless they affect to each other in unanticipated ways.

Based on this model, expression pattern matching methods should be

a valuable to quantify the degree of functional similarity among

genetic perturbation, disease, and drugs. However, despite current

data bases of mRNA expression profiles, which contain thousands of

data points, many of which are available to the public, the number of

combinatorial drug discovery approaches based on expression profiles

is less than might be expected.

Here we introduce the CDA, for predicting combinatorial drug

candidates that target multiple signaling pathways. CDA contains

6,100 expression profiles representing 1,309 molecules which were

imported from Connectivity Map [15]. When a user submits ‘‘up

probe sets’’ and ‘‘down probe sets’’, CDA starts hyper-geometric

tests for signaling pathway gene set enrichment analysis. Next

signaling pathway expression pattern analysis and drug set pattern

analysis are performed to measure expression pattern similarity

between input signatures and 6,100 expression profiles. These

analyses focus on the signaling pathways which are selected in the

gene set enrichment analysis (the previous step). CDA then

generates lists of single drugs and combinatorial drugs showing

similar expression patterns. If user input signatures are disease-

related significant probe sets, high negative scoring drugs can be

considered candidate drugs for treating individuals whose diseased

tissues show opposite gene expression aberrations in signalling

pathways as the input cell line.

We present the results in two different formats: a table view of scores

and experimental details, and a network view to visualize relationships

between signaling pathway entities and known drugs, proteins and

diseases. phExplorer, a graphical data visualization software program,

allows users to browse the complex relationships in an interactive and

dynamic manner, providing clues to how chemicals work synergis-

tically on certain signaling pathways. To validate the technique, we

performed two in vitro combinatorial drug discovery studies, on non-

small cell lung cancer cells and triple-negative breast cancer (TNBC)

cells, and succeeded in each case to find combinatorial drug pairs that

exerted synergistic effects in cell culture.

Results

Drug Combination Suggestion through Transcription
Response Module Analysis

CDA uses gene expression data in cellular models to pinpoint

combinatorial drug pairs that can regulate multiple signaling

pathways that potentially synergize to cause disease states, or

which through alternate pathways compensate to reduce the

efficacy of a drug targeting only one pathway. The combinatorial

drug possibility is predicted by gene expression pattern compar-

ison within the selected disease-related signaling pathways. The

possibility is scored using Kolmogorov-Smirnov statistics. CDA is

composed of four steps; 1) Preparing input signatures and gene set

enrichment analysis of signaling pathways 2) Pathway expression

pattern analysis 3) Drug set pattern analysis 4) Counting of the

number of pathways which show positive/negative correlations

with input signatures for drug ranking (See methods for more

details and Figure 1). To validate the technique, we performed one

in silico single drug discovery study and two in vitro combinatorial

drug discovery studies. In an in silico validation for single drug

analysis, CDA successfully identified a molecule having similar

function (Case one). As the discovered combinatorial drug pairs

were mostly novel, we carried out in vitro validations on non-small

cell lung cancer cells and triple-negative breast cancer (TNBC)

cells (Case two and three).

Case One: Molecules Function as Estrogen Antagonist
Elevated blood levels of estrogen is associated with an increased

risk of breast cancer [16]. Gene expression signatures in breast

cancer cells treated with Letrozole (fifty eight untreated tumors and

fifty eight letrozole-treated tumors, GDS3116) were used to search

the molecules function as estrogen antagonist [17]. Letrozole

inhibits, aromatase, an enzyme that participates in estrogen

biosynthesis. By inhibiting estrogen synthesis, letrozole slows the

proliferations of breast cancer cells. Table 1 shows that cells treated

with fulvestrant share a very similar expression pattern to those

treated with letrozole. Fulvestrant is an estrogen receptor antagonist

with no agonist effects. Fulvestrant not only down-regulates

transcriptional activities of estrogen receptor but also induce its

degradation. Fulvestrant was approved by the FDA for the

treatment of postmenopausal women with hormone receptor-

positive metastatic breast cancer [18]. The gene expression

signatures of cells treated with fulvestrant in 6 different signaling

pathways resembled those of letrozole. Not surprisingly, they show

similar patterns of gene expression on the plasma membrane

estrogen receptor signaling pathway as well as on LPA receptor

mediated events pathway and stabilization, expansion of the E-

cadherin adherens junction pathway, and Reelin signaling pathway.

These results are illuminating in light of the connections in the

literature which show these pathways are regulated by estrogen

and/or involved in cancer progression. E-cadherin is a cell-cell

adhesion protein, and has been shown to play a crucial role in tumor

suppression [19]. A recent study by Oesterrich et al. showed that

estrogen caused down-regulation of E-cadherin levels in breast

cancer cells [20]. Lysophosphatidic acid (LPA; 1-acyl-glycerol 3-

phosphate), which is also regulated by estrogen [21,22] is one of the

simplest natural phospholipids that mediates multiple processes

including neurogenesis, angiogenesis, wound healing, and cancer

progression [23,24]. Reelin is a secreted signaling protein associated

with regulation of neuronal cell positioning and migration. Its

down-regulation is associated with increased migratory ability and

reduced survival in breast cancer [25]. The relationship between

reelin and estrogen/breast cancer is not fully understood.

Letrozole inhibits estrogen synthesis, whereas fulvestrant

blocks the estrogen receptor. Although the mechanisms of those

two compounds are different, the signaling cascades they affect

would be expected to be similar in their down-regulation of

transcriptional activity in downstream pathways. As levels of

estrogen are decreased after the treatment of letrozole, signaling

pathways related to E-cadherin and LPA are affected, and this

perturbation in these pathways are also observed in cells treated

with fulvestrant. They both regulate reelin signaling pathway to

induce apoptosis in cancer cells through as yet unknown

mechanisms.

Case Two: Combinatorial Drugs that Induce Apoptosis on
Tumorigenic Lung Cancer Cells

This case derived from a study by Landi et al. that investigated

the role of cigarette smoking in lung adenocarcinoma development

and survival (forty nine normal lung tissues and fifty eight lung
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tumor tissues, GDS3257). In our analysis, we disregarded

information on smoking, disease state, and gender of the patients.

In order to identify molecules that could reverse the expression

pattern of lung adenocarcinoma cells, we looked for a phenotype

where expression of signature genes was reversed: up-regulated

genes became down-regulated, and vice versa. Signaling pathway

gene set enrichment analysis of the ‘‘reversed phenotype’’ genes in

the lung adenocarcinoma cells showed highlighted that many of

the genes identified in this way are frequently associated with

tumor cell growth and proliferation (Table 2). Based on this gene

expression analysis, we identified, among the top 15 combinatorial

drug pair candidates, two synergistic combinatorial drug pairs:

alsterpaullone and scriptaid; and irinotecan and semustin.

Alsterpaullone is a cyclin-dependent kinase (CDK) inhibitor that

induces apoptosis [26]. Scriptaid is a class of histone deacetylase

inhibitors (HDACis). HDACis are involved in cell growth,

apoptosis and differentiation. Scriptaid also induces cell death in

cancer cells [27,28]. Irinotecan is an anticancer drug that binds to

the DNA topoisomerase 1 complex during DNA replication,

preventing the resealing of single-strand breaks [29]. Semustine

also known as methyl-CCNU, is another anti-cancer drug in the

class of alkylating agents [30,31]. The alsterpaullone-scriptaid and

irinotecan-semustine pairs showed meaningful, statistically signif-

icant expression pattern matching in seven, six lung adenocarci-

noma-related pathways, respectively. Simultaneous and continu-

ous exposure of A549 cells to different concentration of these two

combinatorial drug pairs for 72 hours showed a synergism

(Combination index (CI) ,1 and Dose reduction index (DRI)

.1; Table 3 and 4, Figure 2).

Case Three: Combinatorial Drugs that Induce Apoptosis
on Triple-negative Breast Cancer Cells

Breast cancer is the most common form of cancer in women.

Human epidermal growth factor receptor 2 (HER2), also known

as receptor tyrosine-protein kinase ERBB2, belongs to the

epidermal growth factor receptor (EGFR) family, and it is one of

the most important oncogenes in invasive breast cancer. Based on

the importance of HER2 amplification on breast cancer, the

HER2-targeting monoclonal antibody trastuzumab was developed

[32]. Additionally, aberrant EGFR signaling is a major charac-

teristic of a human cancer including breast cancer. Several anti-

EGFR agents are currently undergoing clinical testing in breast

cancer patients clinically [33]. However, triple negative breast

cancer (TNBC) is a type of breast cancers that does not express the

genes for estrogen receptor (ER), progesterone receptor (PR) or

human epidermal growth factor receptor 2 (HER2). For that

reason, novel effective therapeutic agents are needed for TNBC

patients [34]. Combined treatment of general breast cancer cells

with drugs that target EGFR and HER2 results in a synergistic

antitumor effect [35,36]. That means that targeting EGFR family

signaling pathway is a good strategy for breast cancer treatment.

To discover a synergistic combinatorial drug pair for TNBC

patients, we focused on FDA approved drugs. We obtained gene

expression signatures from TNBC cell lines (five normal breast

cancer cell lines and five triple-negative breast cancer cell lines,

GSE6569), and we selected halofantrine - vinblastine pair as a

candidate pair (Figure 3). The CDA analysis indicated that the

pair has opposite expression patterns compared with TNBC

signatures in five different signaling pathways, including four of the

EGFR family signaling pathways and one integrin pathway

(Figure 4). Aberrant activation of the EGFR family is implicated

in a number of cancers and it is already the target of several

antineoplastic agents [37]. A6b1- and a6b4- mediated integrin

signaling is involved in apoptosis, tumour cell invasions, and cell

migration.

Halofantrine is an anti-malarial agent with an unknown mode

of action. Although it has cardiotoxic potential, it is safe when

carefully administered [38]. Vinblastine is a microtubule-targeted

anticancer drug that induces mitotic block and apoptosis by

suppressing microtubule dynamics at lower concentration, and

reducing microtubule polymer mass at higher concentration [39].

As shown in Figure 4B, halofantrine and vinblastine are indirectly

related to EGFR family signaling pathways. Furthermore, both are

also related to an integrin signaling pathway. Based on this

information, we hypothesized that halofantrine and vinblastine are

synergistic because they simultaneously affect the EGFR and

integrin signaling pathways. Furthermore, sensitivity of HER2-

positive breast cancer cells resistant to anti-HER2 therapies are

related to antiapoptotic proteins MCL1 and Survivin [40]. And

these two proteins commonly have protein-protein interactions

with CASP3, a vinblastine-related protein [41,42]. Based on this,

we hypothesized that vinblastin could be a good TNBC drug

candidate. Using the steps described for all three cases, CDA users

will be able to put forward testable hypotheses by combining

signaling pathway expression information with known drug-

protein-disease information from phExplorer.

Discussion

Since the number of new drug has not kept pace with the

enormous increase in pharma R&D spending, drug discovery

researchers have become more creative in finding new uses for

existing drugs [43]. Analyzing large data sets such as gene

expression [15], chemical similarity [44], side-effect similarity [45],

disease-drug network [46], and phenotypic disease network [47]

has been applied for drug repositioning. Exploration of drug off-

targets using chemical-protein interactome can also provide

alternative strategy [48]. However drugs with single targets

frequently show limited efficacies and drug resistance at the some

point. To overcome these problems, systems-oriented drug design

is now moving to multicomponent therapies and multi-targeted

drugs, based on the idea that targeting drugs to act on multiple

signaling pathways will maximize therapeutic efficacy [49]. With

this in mind, we have designed a system for multiple signaling

pathways targeting combinatorial drug discovery using gene

expression profile. There are three groups of pharmacodynami-

cally synergistic combinations; 1) anti-counteractive action group

2) complementary action group 3) facilitating action group. There

are a variety of mechanism of actions represented by these

combinations, arising from drug interactions with the same or

different targets of the same or different pathways, and from

modulations of crosstalk pathways and network robustness [8].

The robustness of CDA does not depend heavily on the

particular bioinformatics method employed for signature extrac-

tion, thus providing a flexible analysis platform that can be

adopted by a variety of users with different software tools for

handling gene expression analysis. Although genome-wide expres-

sion analysis has become a routine tool in genomic research,

extracting biologically meaningful information remains a major

challenge. Statistically significant genes can be obtained by

Figure 1. Analysis pipeline of CDA. Combinatorial drug analysis process. In drug set pattern analysis step (the bottom right box), combinatorial
drug analysis process treats profiles of two different molecules as a group to measure the synergistic effects of them.
doi:10.1371/journal.pone.0042573.g001
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number of different ways. Moreover, there is no standard rule to

restrict the number of genes. Thus, significant gene selection is

quite depending on individual researchers. Given this multiplicity

of approaches, significant gene lists can be quite diverse according

to extraction algorithms and research principles. This lack of

standardized bioinformatics approaches brings with it a risk of

insufficient information usage that can lead to inaccuracies in the

final interpretation. To offset these differences, for expression

analysis and interpretation, our strategy employs functionally

important genes as data sets, rather than entire statistically selected

gene sets. This approach was validated by an in silico case

(Information S1). CDA provides a mechanism whereby hundreds

of input signature genes will be split into signaling pathways at the

first step, therefore users don’t need to themselves extract a small

group of significant gene sets using number of different algorithms.

Through this process, CDA successfully has identified a number of

molecules having similar function (Table 1). In this study, we

presented case studies whereby CDA successfully predicted

synergistic combinatorial drug pairs in lung cancer and triple

negative breast cancer. Together with phExplorer, CDA also

provides functional insights of combinatorial drugs.

Using CDA, the number of matched pathways decides the

ranking of drug candidates, however, the type of matched

pathways must be considered carefully. As the interpretation of

result and the final decision must be made by researchers, we tried

not to restrict their choice by providing strictly ordered list based

on our limited pre-knowledge.

Materials and Methods

Data Source
Reference molecule-treated expression data was downloaded

from Connectivity Map (build 02) (http://www.broadinstitute.

org/cmap/). It contains 6,100 expression profiles representing

1,309 molecules. Molecules were selectively applied to five

different human cancer cell lines for short duration. Each

molecule-treated expression profile was paired with a control,

and each profile was represented by a non-parametric rank-

ordered list of all probe sets.

Pathway gene set data was downloaded from Pathway Interac-

tion Database (PID) on 09/03/2010 (http://pid.nci.nih.gov/).

Only the NCI-Nature Curated data was used. Pathway gene set

information was extracted, consisting of 166 pathways comprising

2,297 genes. These genes were annotated to Affymetrix GeneChip

Human Genome U133 Array Set HG-U133A probe set. The final

form of pathway data consists of 166 signaling pathways and 3,726

probe sets.

Furthermore, nine public databases, EntrezGene interaction

[50], MINT [51], DIP [52], CTD [53], TTD [54], ChemBank

[55], PharmGKB [56], OMIM (http://www.ncbi.nlm.nih.gov/

omim/), and GAD [57] were integrated to visualise enrich drug-

protein-disease network map. For data integration in a unified

format, we adopted PubChem CID for drugs, GeneID for

proteins, and MeSH descriptor for diseases. The integrated

database is called PharmDB, and it is available at http://

pharmdb.org/.

Input Signatures
Three different GDS/GSE data files were downloaded for each

case study. All of them were used Affymetrix Human Genome

U133A Array.

Case 1: GDS3116 - Letrozole effect on breast cancer.

Fifty eight untreated tumors vs. fifty eight letrozole-treated

tumors
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Case 2: GDS3257 - Lung adenocarcinoma.

Forty nine normal lung tissues vs. fifty eight lung tumor tissues

Case 3: GSE6569 - Triple-negative breast cancer cell lines.

Five normal breast cancer cell lines: BT474, SKBR3, HCC-

1419, HCC-1954, MCF7

Triple-negative breast cancer cell lines: BT20, BT549, HCC-

1806, MDA-MB-231, MDA-MB-468

The expression data were normalized using RMA from the

BioConductor Affy package. Then these data were analyzed using

a method called empirical Bayes in limma. To extract statistically

differentially expressed genes, 2-fold change and p-value ,0.05

were set as default. The signatures were represented by two probe

sets, ‘‘up probe sets’’ and ‘‘down probe sets’’. With given input

signatures, hyper geometric tests were performed for signaling

pathway gene set enrichment analysis. Signaling pathways with p-

value ,0.01 were selected as it was believed that input signature

genes were enriched in these pathways.

Enrichment Analysis
Signaling pathway expression pattern analysis and drug set

pattern analysis were performed based on the Kolmogorov-

Smirnov statistics. To determine whether the distribution of input

gene sets/or drug sets was significant, 10,000 times permutations

were carried out by generating random ranking matrices. The sets

with p-value ,0.01 were indicated as enriched.

Signaling Pathway Expression Pattern Analysis
6,100 molecule-treated expression profiles were rank ordered

using gene set enrichment analysis for each selected pathway. As

mentioned above, there were two types of input set, ‘‘up probe

sets’’ and ‘‘down probe sets’’. The expression pattern similarity is

calculated for both sets. The procedure is as follows:

1) Calculate Kolmogorov-Smirnov score for both ‘‘up probe

sets’’ and ‘‘down probe sets’’

e~an expression profile

KSe~KS (Kolmogorov� Smirnov) score for the ‘‘up probe sets00

or the ‘‘down probe sets00

n~the total number of probe sets (22,283)

t~the number of probe sets in either the ‘‘up probe sets00 or the

‘‘down probe sets00

j~the position of a probe set in the ordered input signature probe set lists

V(j)~the position of the jth probe set in the ordered list of all probe sets:

a~ Max
t

j~1

j

t
{

V jð Þ
n

� �

b~ Max
t

j~1

V jð Þ
n

{
j{1ð Þ

t

� �

KSe~
a if awbð Þ

{b if bwað Þ

( )

Table 2. Enriched pathway in lung adenocarcinoma.

Pathway Pathway Category

amb2 Integrin signaling Integrin mediated cell-cell signaling pathways Integrin mediated cell-extracellular matrix signaling
pathways

Aurora A signaling Cell cycle pathways, mitotic

Aurora B signaling Cell cycle pathways, mitotic

BMP receptor signaling Bone morphogenetic proteins signaling pathway

Direct p53 effectors p53 signaling pathway

E2F transcription factor network Transcription factor mediated signaling pathways Cell cycle pathways, mitotic Transcription
pathways

Endothelins Endothelin signaling pathway

FGF signaling pathway Fibroblast growth factor signaling pathway

FOXM1 transcription factor network Forkhead signaling pathways

doi:10.1371/journal.pone.0042573.t002

Table 3. CI values for the drug combinations at 25%, 50%,
75% levels of inhibition of A549 cell proliferation.

CI Values 25% 50% 75%

Alsterpaullone + Scriptaid 0.887 0.647 0.483

Irinotecan + Semustine 0.816 0.718 0.636

doi:10.1371/journal.pone.0042573.t003

Table 4. DRI values for the drug combinations at 25%, 50%,
75% levels of inhibition of A549 cell proliferation.

DRI Values 25% 50% 75%

Alsterpaullone + Scriptaid

Alsterpaullone 2.013 3.162 4.968

Scriptaid 2.565 3.020 3.554

Irinotecan + Semustine

Irinotecan 1.452 1.705 2.002

Semustine 7.841 7.589 7.345

doi:10.1371/journal.pone.0042573.t004
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Figure 2. Synergistic combinatorial drug pairs on lung cancer cells. (A, B) Effects of alsterpaullone, scriptaid, irinotecan, and semustine on
A549 cancer cell proliferation. IC50 indicates the concentration of drug that induce 50% of inhibition of cell proliferation. Error bars represent the
standard deviation of six experiments. (C, D) Drug pairs were treated in 1:1 molar ratio. The IC50 values of each drug are plotted on the axes, and the
dashed line represents addictive effect. Triangle point represents the concentrations of the combinations resulting in 50% of proliferation inhibition.
As the triangle points are positioned on the left of the dashed line, these combinatorial drug pairs are synergistic. The IC50 values of each drug in
alsterpaullone-scriptaid and irinotecan-semustine combinations are 0.65 mM and 26.05 mM, respectively.
doi:10.1371/journal.pone.0042573.g002

Figure 3. In vitro validation of halofantrine and vinblastine alone and in combination in a triple-negative breast cancer cell line. (A)
Effects of halofantrine and vinblastine on MDA-MB-231 TNBC cell proliferation. IC50 indicates the concentration of drug that induce 50% of inhibition
of cell proliferation. (B) Halofantrine and vinblastine combination was treated in 2:1 molar ratio. Halofantrine and vinblastine combination shows a
strong synergistic effect. The IC50 values of each drug in halofantrine-vinblastine combinations are 0.55 mM and 0.27 mM, respectively. The
combination shows a strong synergistic effect (CI value is 0.12, and DRI values for halofantrine and vinblastine are 14.17 and 22.09, respectively).
doi:10.1371/journal.pone.0042573.g003
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1) Calculate the Enrichment Score (ES) for each profile

ESe~0(if KSup and KSdown have the same algebraic sign)

Otherwise, across all profiles,

se~KSup{KSdown

p~Max seð Þ

q~Mix seð Þ

The ES for these profiles are:

ESe~

se

p
(if se

w0)

{ðs
e

q

�
if se

v0ð Þ

8>><
>>:

9>>=
>>;

1) Rank the profiles in descending order of ESe

Drug Set Pattern Analysis
Molecules were applied to different cell lines with various doses,

and the ES of each molecule was calculated using the distribution

of the molecule-treated profiles, using the same method as used in

calculating the KS score in signaling pathway expression pattern

comparison. For the case of combinatorial drug analysis,

signatures of two different molecules were treated as a group.

The rationale is as follows: we assume two molecules, ‘‘A’’ and ‘‘B’’

show highly similar expression pattern with the expression of

signaling pathway ‘‘SP1’’ and ‘‘SP2’’, respectively. The purpose of

combinatorial drug is matching up two molecules which are

synergistic or complementary. ‘‘A’’ and ‘‘B’’ are highly related

with different pathways, and thus might affect to each other in

unanticipated ways. For that reason, profiles of ‘‘A’’ and ‘‘B’’ are

grouped as a set, then the ES (Enrichment Score) of ‘‘A and B’’

combination is calculated in two signaling pathways independent-

ly. So the similarity of expression pattern of ‘‘B’’ is now considered

not only in ‘‘SP2’’ but also in ‘‘SP1’’ as a combinatorial drug

partner. If ‘‘B’’ shows high ESs in both pathways, ‘‘B’’ could be a

complementary partner for ‘‘A’’ as it covers ‘‘SP2’’ which ‘‘A’’

might not be able to regulate, and at the same time, synergistic

effect could be expected in ‘‘SP1’’ as both of them are highly

enriched in there.

Using these steps, the KS score was computed using these

profiles. Then, random permutation tests (10,000 times) were

carried out to estimate the significance of a distribution of those

profiles. The molecules with p-value ,0.01 were assumed as

significant.

Drug Ranking
At this point, we have listed single/combinatorial drugs for each

disease-associated signaling pathway in our database. The goal of

creating this system is to provide a means of selecting single/

combinatorial drugs that can regulate disease-related signaling

pathways to the greatest potential. To this end, for each drug, the

number of pathways scored greater than the positive threshold was

counted. The positive threshold for single drug and combinatorial

drug were 0 and 0.5, respectively. The drugs were ranked in

descending order of the number of pathways they appeared in.

Pathways that scored less than the negative threshold were also

listed. The negative threshold for single drug and combinatorial

drug were 0 and 20.5, respectively. These negatively correlated

pathways can be treated as negative effects.

Cell Culture and Materials
A549 and MDA-MB-231 were purchased from American Type

Culture Collection. RPMI containing 10% fetal bovine serum and

1% antibiotics were used for cell cultivation. Alsterpaullone,

Scriptaid, Irinotecan hydrochloride, Semustine, Halofantrine

hydrochloride, Vinblastine sulfate salt were purchased from Sigma.

MTT Assay
A549 or MDA-MB-231 cells were seeded in the 96-well plates.

After 24 h, cells were treated with indicated chemicals. After

incubation for 3 days, MTT reagent (5 mg/ml) (Sigma) was added

to each well, and the plate was placed at 37uC for 2 h. After

aspirating the supernatant, 200 ml of dimethyl sulfoxide (Sigma)

was added to each well. Colored formazan product was assayed

spectrophotometrically at 570 nm using ELISA plate reader.

Combination Index (CI) and Dose Reduction Index (DRI)
Calculations

Synergism and antagonism for combinatorial drug were

quantified by the combination index (CI), where CI,1, CI = 0,

CI.0 indicate synergism, addictive, and antagonism, respectively.

CI was determined by the following equation:

CIAzB~
DA=AzB

DA
z

DB=AzB

DB

DA is the concentration of drug A that induce the inhibition of

cell growth. DA/A+B is the concentration of drug A in the

combination A+B giving the same inhibition effect. The dose

reduction index (DRI) is a measure of how much the dose of each

drug may be reduced in a combination for a given degree of effect

compared with the concentration of each drug alone.

DRIA~
DA

DA=AzB

and DRIB~
DB

DB=AzB

CI and DRI indexes were calculated with the CalcuSyn version

2.1 software (Biosoft, Cambridge, UK).

Figure 4. Network map of halofantrine and vinblastine on triple-negative breast cancer using phExplorer. (A) It seems that halofantrine
and vinblastine could affect on five different signaling pathways in TNBC. Group 5: Halofantrine- or vinblatine-related proteins which are also related
with proteins of A6B1 and A6B4 Integrin signaling pathway. Group 6: Proteins which are related with vinblasitne as well as proteins of EGFR family
signaling pathways (such as ERBB1 signaling pathway, ERBB2/ERBB3 signaling events, ERBB4 signaling events, ERBB receptor signaling network). (B)
We hypnotized that halofantrine and vinblastine are synergistic because they complementary regulate integrin and EGFR signaling pathways. Group
0: A part of EGFR family signaling pathways. Group 1: A part of A6B1 and A6B4 Integrin signaling pathway.
doi:10.1371/journal.pone.0042573.g004
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