
Review

 10.1517/17460440802256905 © 2008 Informa UK Ltd ISSN 1746-0441 945
All rights reserved: reproduction in whole or in part not permitted

                            Aminoacyl-tRNA 
synthetase-interacting 
multi-functional protein 1/p43: 
an emerging therapeutic protein 
working at systems level      
     Sang Won   Lee     ,    Gyuyoup   Kim      &    Sunghoon   Kim    †     
 †Seoul National University, Center for Medicinal Protein Network and Systems Biology, 
College of Pharmacy, Kwanak-ro 599, Kwanak-gu, Seoul 151-742, Korea                           

  Background : Drug discovery programs are based on the presumption of one 
drug–one action–one disease, which is frustrated by the complexity of 
biological systems. Because the aberration of a single gene often leads to 
multiple pathological symptoms, we should understand the functional network 
of the disease-related proteins to develop effective therapy.  Objectives : To 
describe how activities of proteins are reflected in phenotypes and their 
pathological implications using aminoacyl-tRNA synthetase-interacting 
multi-functional protein 1 (AIMP1).  Methods : The physiological activities of 
AIMP1 are unveiled through  in vitro  approaches and  in vivo  phenotyptic 
investigation. Bioinformatics tool was used to combine all AIMP1-target 
proteins.  Conclusion : Although a cytosolic protein, AIMP1 can be secreted 
as a cytokine to control immune response, angiogenesis and wound healing, 
and as a glucagon-like hormone for glucose homeostasis. It is involved 
in the regulation of autoimmune control and TGF- β  signaling within the 
cells. AIMP1-deficient mice developed multiple phenotypes in immune 
systems, metabolism and body growth. The therapeutic potential of this 
multi-functional protein with associated biological activities are discussed.  
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  1.   Introduction 

 The discovery of effective therapeutic targets has become a critical determinant 
for the success of new drug discoveries ever since target-based therapy constituted 
a main trend. Among various biological components, proteins provide the main 
source of therapeutic targets because they are in charge of most metabolism, 
regulation, and frameworks of biological systems. To our surprise, the number of 
protein-encoding genes in humans turned out to be only 20,000 – 25,000   [1] , 
which is much less than we have predicted based on the complexity of necessary 
functions to run our body. Ironically, fewer number of structural gene raised 
more complicated puzzles to deal with because the limited number of genes 
should be somehow differentiated at protein level to meet the requirement of 
body complexity. For instance, a single gene can encode multiple forms of protein 
through alternative splicing, gene fusion, proteolysis, which are further refined by 
various chemical modifications. However, even without these chemical changes, 
the same polypeptide can execute multiple functions through its diverse 
combination with molecular partners. 
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 Considering that most human diseases express more than 
a single symptom, it is important to understand the 
functional diversification of the disease-associated proteins, 
as well as their functional and regulatory networks, to design 
an effective method of curing the disease. Owing to advances 
in functional genomics and proteomic approaches, many 
unexpected linkages among seemingly unrelated processes 
are being unveiled and the number of the multi-functional 
or moonlighting protein is being rapidly increased   [2-9] . 
Anticipating more functions to be found from existing 
proteins, the norm may be changed from ‘one protein–one 
function’ to the more progressive ‘one protein–multi-function’ 
concept in the near future. 

 The activities of functionally promiscuous proteins 
can be regulated by many different ways including 
transcription, subcellular localization, homo- or hetero-
oligomerization and interactions with substrates or ligands. 
Thus, far, well known moonlighting proteins include 
glyceraldehyde-3-phosphate dehydrogenase, lens crystallins, 
ribosomal proteins, elongation factors, and phosphoglucose 
isomerase among others   [2,8] . Recently, accumulating 
evidences add aminoacyl-tRNA synthetases (ARSs) and 
ARS-interacting multi-functional proteins (AIMPs) to the 
group of multi-functional proteins   [5,10,11] . For instance, 
these enzymes and associated factors were shown to be 
involved in the control of apoptosis   [12,13] , proliferation   [14] , 
angiogenesis   [15-17] , inflammation   [18,19] , DNA repair   [20] , 
RNA splicing   [21]  and silencing   [22] , immune system   [23]  and 
virus packing   [24] . For this reason, aberrant expression or 
activities of ARSs and AIMPs are heavily linked to various 
human diseases   [25] . These enzymes execute such roles mainly 
through the formation of diverse protein complexes. Among 
them, the most intriguing is the macromolecular complex 
consisting of nine different ARSs (glutamyl-prolyl, isoleucyl-, 
leucyl-, methionyl-, glutaminyl-, lysyl-, aspartyl- and 
arginyl-tRNA synthetase) and three ARS-interacting multi-
functional proteins (AIMP1, AIMP2 and AIMP3 earlier 
named as p43, p38 and p18, respectively) present in the 
mammalian system. At present, about half of the component 
enzymes and non-enzymatic factors were demonstrated to 
play functions other than protein synthesis. Considering this 
fact, at least one plausible function for the complex 
formation seems to provide a platform in controlling the 
diverse regulatory activities of the component ARSs and 
AIMPs   [26] . Among these complex-forming ARSs and 
AIMPs, AIMP1/p43 is most prominent in its functional 
versatility at present. In this paper, we describe diverse 
activities of AIMP1, its potential association with human 
diseases as well as its perspective therapeutic functions.  

  2.   Multiple pathological phenotypes of 
AIMP1-defi cient mice 

 Because the significance of protein functions would be 
reflected by  in vivo  phenotypes resulting from genetic 

modification of the encoding gene, AIMP1-deficient 
mice were generated by insertional inactivation of the 
encoding gene using gene trap method   [27] . Although the 
homozygous mice were delivered following the rule of 
Mendelian segregation, they manifested high lethality 
throughout pre and postnatal stages. AIMP1-deficient mice 
were anatomically normal but the overall body size was 
dramatically reduced ( Figure 1 ). Because body size is 
determined by many different causes, it is difficult to link 
any specific function of AIMP1 to this phenotype. AIMP1-
deficient mice also showed retarded rate in wound 
healing and reduced collagen density ( Figure 1 ). Systematic 
analysis of anatomical and histological characteristics 
revealed that these mice suffer from severe lupus-like auto-
immune phenotypes such as infiltration of immune cells to 
various organs, accumulation of autoantibodies, antinuclear 
antibodies, glomerular nephritis ( Figure 1 ) and these 
symptoms are more prominent in females   [23] . The 
homozygous mice also showed hypoglycemia implying its 
function in glucose metabolism ( Figure 1 )   [28] . Although 
they also displayed severe disorders in neural and reproduction 
systems, these phenotypes require further investigation 
to understand the functional connections to AIMP1. 
It is surprising to see all of these distinct phenotypes result 
from the lack of single gene product, AIMP1. In the next 
section, we describe distinct activity of AIMP1 at different 
cellular locations and their pathological linkage to the 
disclosed disorders.  

  3.   Role of AIMP1 in the molecular assembly 
of multi-tRNA synthetase complex and 
protein synthesis 

 AIMP1 was first discovered as a factor, p43, associated 
with the multi-ARS complex mentioned above   [29-31] . 
For protein synthesis, this complex is believed to provide 
an efficient trafficking channel of aminoacyl-tRNAs for 
protein synthesis   [32] . Although the 3D structure of the 
multi-ARS complex remains to be determined, comprehensive 
approaches have been applied to look into the physical 
relationship among the component proteins such as 
partial dissociation   [33] , hydrophobic chromatography   [34] , 
electron microscopy   [34-37] , chemical crosslinking   [38] , 
genetic approaches   [39-41]  and systematic depletion 
analysis   [42] . This complex is thought to consist of a few 
subdomains linked together through three AIMPs   [42] . 
In this complex, AIMP1 is believed to be located at 
the center   [43] , interacting with arginyl-tRNA synthetase 
(RRS), glutaminyl-tRNA synthetase (QRS), methionyl-tRNA 
synthetase (MRS) and AIMP2/p38. A systematic mapping 
of the interactions among the components demonstrated 
that they are interconnected. Moreover, the depletion 
analysis of the components demonstrated that they are 
mutually dependent for their cellular stability, although the 
degree of dependency varies among them. AIMP1 is essential 



Lee, Kim & Kim

 Expert Opin. Drug Discov. (2008) 3(8) 947

for the stability of several components   [42] , together with 
two other AIMPs. 

 Interestingly, many complex-forming ARSs contain unique 
N- or C-terminal peptide appendices thought to be involved 
in their versatile molecular interactions   [39] . The 146 aa 
containing N-terminal domain of AIMP1 interacts with the 
N-terminal appendix of RRS and QRS, as well as with the 
leucine zipper motif of AIMP2   [44-46] . The interaction of 
AIMP1 with RRS augments amino acylation activity of 
RRS   [44] . Yet, despite the fact that AIMP1 improves the 
cellular stability of the associated enzymes and the catalysis 
of the associated enzyme, AIMP1 seems to be dispensable in 
normal physiological conditions or in the cells cultivated in 
complete medium because cellular protein synthesis and cell 
growth are not seriously affected by the depletion of 
AIMP1   [47] . Thus, the multiple phenotypes shown in 
AIMP1-deficient mice may not necessarily result from its 
potential role in protein synthesis. Perhaps, the functional 
importance of AIMP1 in protein synthesis may become 
obvious at starving or stressful conditions.  

  4.   AIMP1 in immune control 

 The functional relationship of AIMP1 to immune reaction 
originated from the discovery of a polypeptide with cytokine 
activity in the culture medium of murine methylcholanethrene 
A-induced fibrosarcoma cells   [48] . This peptide was named 
endothelial monocyte activating polypeptide II (EMAPII)   [31,49] , 
for its ability to induce activation of tissue factor in 
human umbilical vein endothelial cells. Interestingly, this 
polypeptide turned out to be the C-terminal part of AIMP1 
associated with multi-ARS complex. To generate the 166 aa 
C-terminal domain equivalent to EMAPII, 312 aa human 
AIMP1 is cleaved by caspase-7 on apoptosis   [50] . Because of 
this initial finding, AIMP1 has been thought to be an 
inactive precursor for EMAPII. However, subsequent 
investigations demonstrated that AIMP1 itself is also secreted 
from intact mammalian cells and works as a cytokine to 
trigger pro-inflammatory response through monocytes and 
macrophages ( Figure 2 )   [18] . Considering the critical role of 
AIMP1 in the stability of the multi-ARS complex   [42] , the 
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  Figure 1     . Multiple phenotypes resulting from the depletion of AIMP1.  The AIMP1-defi cient mice show reduced wound healing and 
collagen synthesis  [47] .  A.  The 0.5 cm diameter full-thickness wound was introduced on the back skin of AIMP1 +/+  and AIMP1 -/-  mice and 
wound closure rate was compared at various time intervals.  B.  The amount of collagen was compared by immunofl uorescence staining 
in the re-epithelialization region of the back skin wound between AIMP1 +/+  and AIMP1 -/-  mice.  C.  AIMP1 defi ciency also causes severe 
growth retardation  [23] .  D.  The AIMP1-defi cient mice also suffer from lupus-like autoimmune disorders  [23] . Among many autoimmune 
phenotypes displayed by this mutant, infl ammation in lung and liver is shown by hematoxilyn and eosin staining.  E.  Glomerular 
immunoglobulin deposition is also observed by immunofl uorescence staining of kidney tissues with anti-IgG antibody. In addition, the 
homozygous mice show disorder in neural and reproduction systems that need further investigation for functional linkage.    
   Adapted from Am J Pathol 2005;166:387-98 and Am J Pathol 2007;170:2042-54, with permission from the American Society for Investigative Pathology.   
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proteolytic cleavage of AIMP1 may lead to disintegrate the 
multi-ARS complex rather than to release EMAPII domain 
from the bound complex. The secretion of intact AIMP1 is 
found in different types of cells including prostatic adenoma 
cells, immune and transfected cells under various conditions 
such as apoptosis, drug treatment, cytokine stimulation, heat 
shock and hypoxia   [18,51-54] . The C-terminal domain of 
AIMP1 shows partial homology with those of a few different 
inflammatory cytokines such as RANTES (regulated on 
activation, normal T-cell expressed and presumably secreted) 
and monocyte chemotactic protein 1. In fact, extracellular 
treatment of AIMP1 activates monocyte and macrophages 
through mitogen-activated protein kinases (MAPKs) 
activation relayed by phospholipase C γ , protein kinase C 
(PKC) and NF- k B   [18,55,56] , leading to increased expression 
of inflammatory molecules including tumor necrosis 
factor- α , interleukine-8 (IL-8), monocyte chemotactic 
protein-1, macrophage inflammatory protein-1 and IL1- β . 
AIMP1 increases IL-12 production through the activation of 
NF- k B in macrophage   [57]  and also in bone marrow-derived 
dendritic cells   [58]  ( Figure 2 ). As IL-12 is known to have 
an important role in cell-mediated Th1 immune responses, 
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  Figure 2     . Diverse extra- and intracellular activities of AIMP1.  
It is harbored in multi-tRNA synthetase complex to facilitate the 
assembly and stability of the component enzymes and associated 
factors  [42] . It also resides in endoplasmic reticulum, holding heat-
shock protein gp96 to prevent its aberrant extracellular exposure 
that may trigger autoimmune phenotypes  [23] . It can also prevent 
ubiquitylation of Smurf2  [102] , which is the negative regulator of 
TGF- β  signaling pathway, thereby controlling TGF- β -dependent cell 
growth control. It is also secreted to work on immune, endothelial 
cells and fi broblasts to give the indicated activities depending on 
the target cells. AIMP1 is also enriched in pancreatic  α  cells and 
secreted out to the blood on hypoglycemia for the recovery of 
blood glucose level  [28] .    

AIMP1 may also function as a potential modulator of 
cell-mediated immunity through induction IL-12. Owing 
to the fact that IL-12 recently showed its effect on 
cancer immunotherapy, as well as on immune responses 
against infectious diseases   [59] , AIMP1 is expected to play a 
critical role in the development of the Th1 immune responses 
associated with cancer immunotherapy and protective 
immunity against intracellular pathogens   [57,58] . 

 Aside from the functions mentioned above, AIMP1 
induces monocyte cell adhesion through the upregulation of 
intercellular adhesion molecule 1 (ICAM-1), which is an 
immunoglobulin-superfamily member widely expressed on 
the surface of vascular endothelium, monocytes, lymphocytes, 
and leukocytes   [60-62] . ICAM-1 may mediate AIMP1-induced 
cell–cell adhesion through lymphocyte function-associated 
antigen-1 or leukocyte integrin Mac-1   [63] . Likewise, AIMP1 
has been found to induce homotypic cell adhesion of 
monocytes by stimulating different MAPKs through 
phosphatidylinositol 3-kinase-dependent and -independent 
upregulation of ICAM-1   [55] . Because ICAM-1 promotes 
cell adhesion in a variety of processes such as inflammation 
and atherosclerosis   [64] , AIMP1 is probably implicated in 
such processes as well   [55,56] . 

 In contrast to secreted AIMP1 that boosts immune 
system, intracellular AIMP1 seems to play an opposite role 
in immune control ( Figure 2 ). Some population of AIMP1 
resides in endoplasmic reticulum (ER) to interact with 
gp96   [23] , which is the ER-resident member of the hsp90 
family   [65] . Similar with AIMP1, heat-shock protein gp96 
can be secreted out of ER, leading to activation and 
maturation of dendritic cells   [66-68]  by direct interaction with 
CD91 and toll-like receptor 2/4 of dendritic cells   [69-71] . 
As a result, activated dendritic cells secrete pro-inflammatory 
cytokines and induce major histocompatibility class I 
and II   [71,72] . Transgenic mice chronically expressing gp96 on 
cell surfaces show significant DC activation and systemic 
autoimmune disease phenotypes such as lupus   [73] . As well, 
AIMP1-deficient mice show similar phenotypes as the 
gp96-expressing transgenic mice, suggesting their close 
functional linkage. 

 In addition, AIMP1-deficient mice show the increased 
cell surface localization of gp96, resulting in the same 
outcome as the transgenic mice overexpressing gp96 in the 
plasma membrane   [23] . This phenomenon discloses 
characteristic phenotypes such as systemic inflammatory cell 
infiltration to various organs and deposition of autoimmune 
antibodies. Dendritic cells are involved in the pathogenesis 
of autoimmunity   [74] , and chronic maturation of tissue 
dendritic cells induces severe organ-specific autoimmune 
disease and systemic autoimmunity   [75] . Because the 
association of AIMP1 with gp96 seems to be important for 
the suppression of autoimmune reaction and aberrant 
secretion of these two housekeeping proteins trigger abnormal 
immune response, controlling the intracellular association 
and extracellular secretion of the two proteins would provide 
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interesting therapeutic points for autoimmune diseases or 
even tumorigenesis.  

  5.   AIMP1 in angiogenesis 

 AIMP1 seems to control angiogenesis process differently 
depending on its concentration ( Figure 2 )   [15] . At low 
concentration, it prompts the migration of endothelial cells 
through extracellular signal-regulating kinase 1/2 (ERK1/2)-
mediated induction of matrix metalloprotease 9. At high 
concentration, AIMP1 inhibits angiogenesis by the induction 
of Jun N-terminal kinase phosphorylation and caspase-3 
activation. The dose-dependent biphasic activity of AIMP1 
is reminiscent of other signaling molecules such as estrogen   [76] , 
statin   [77] , TGF- β 1   [78]  and thrombospondin-1   [79] . Because 
angiogenesis is a complex biological process, the mode of 
biphasic activity seems to be required for finer control in the 
regulation of the angiogenic process. 

 Although it is not yet determined whether AIMP1 would 
work on all the types of endothelial cells, there are several 
lines of evidence suggesting its potential efficacy against cancer 
through the process of restricting neovascularization   [15,80] . 
In a previous work, AIMP1 demonstrated its potential 
interaction with  α -subunit of ATP synthase   [81] , previously 
identified as the binding target of the antiangiogenic factor, 
angiostatin   [82,83] . As angiostatin inhibits vascularization 
through the suppression of ATP metabolism on the surface 
of endothelial cells, the interaction of AIMP1 with  α -subunit 
of ATP synthase may render a similar effect on endothelial 
cell growth, resulting in the suppression of tumor vasculature. 
In physiological conditions, AIMP1 may work against 
cancer as a double-edged sword. First, it can activate cell-
mediated immunity and suppress tumor vascularization, 
both of which can work together to smother cancer 
progression. In fact, systemic administration of AIMP1, 
either alone or in combination with cytotoxic anticancer 
drug, efficiently suppressed cancer progression and improved 
survival rate   [84] . 

 Interestingly, the genes encoding microRNAs, miR-15a 
and miR-16a, which are located at chromosome 13q14, are 
often deleted in pituitary adenomas   [85] . Expression of miR-
15a and miR-16a shows positive correlation with AIMP1 
secretion but inversely related to tumor diameter and 
expression of RRS that anchors AIMP1 in multi-tRNA 
synthetase complex   [85]  but miR-15 and miR-16 were 
suggested to downregulate RRS expression through their 
association with the 3 ′ -UTR region of RRS mRNA   [86] . 
Thus, cancer-specific depletion of miR-15 or miR-16 would 
lead to the increase of RRS expression, which would inhibit 
AIMP1 secretion as it would hold AIMP1 in the multi-
tRNA synthetase complex. Because extracellular AIMP1 
would suppress tumorigenesis through its antiangiogenic 
and immune-activating activities, miR-15 and miR-16 
would exert their tumor suppressive activity through its 
linkage to RRS that is physically in contact with AIMP1.  

  6.   AIMP1 in wound repair 

 Owing to the fact that inflammation and angiogenesis constitute 
important parts of wound repair   [87,88] , it is reasonable to 
imagine that AIMP1 may play a role in this process ( Figure 2 ). 
It is rapidly enriched in the wound site, causing secretion of 
tumor necrosis factor- α  from recruited macrophages. 
Surprisingly, the secreted AIMP1 triggers proliferation of 
dermal fibroblasts in contrast to its antiproliferative activity 
in endothelial cells   [47] . It likewise induces collagen production 
from the activated fibroblasts. Consistent with the observed 
activities, AIMP1-deficient mice showed severely retarded 
wound closure and reduced collagen density ( Figure 1 )   [47] . 
The recovery of this phenotype by exogenous supplementation 
of purified AIMP1 suggests its potential use as a new wound-
healing agent. Nonetheless, it is to be known whether it will 
result in a synergistic effect with the known growth factors 
used for wound healing agents such as fibroblast growth, 
epidermal growth or platelet-derived growth factors.  

  7.   AIMP1 as a hormone for metabolism control 

 In addition to the functions mentioned above, AIMP1 also 
seems to work as a hormone for glucose homeostasis ( Figure 2 ). 
Tissue blot analyses revealed that AIMP1 is highly enriched 
in various secretary organs such as salivary gland and 
pancreas   [28] . In the pancreas, AIMP1 is particularly localized 
at the secretory vesicles of  α  cells in the pancreatic islets, 
together with glucagon. It is secreted to the blood under 
hypoglycemic condition and induces glucagon secretion 
from pancreatic  α  cell, recovering blood glucose level. In 
addition, AIMP1 also facilitates glucose supply to blood 
through the induction of glycogenolysis in liver, and the 
lipolysis of triglyceride in adipose tissue. AIMP1 -/-  mice 
display various glucose metabolism-related phenotypes; 
 Figure 1 , for instance, body growth is significantly retarded 
although it may have resulted from other unknown disorders. 
In addition, AIMP1 -/-  mice displayed reduced food intake, 
and the weight of major organs being involved in fuel 
metabolism. The reduction of body fat content shown in 
AIMP1 -/-  mice is also observed in glucagon receptor-null 
mice   [89] . AIMP1 -/-  mice also show the dramatic reduction 
of glucose, fatty acid, glucagon, and insulin in the plasma 
levels, as compared with their wild type littermates under 
fasting conditions. Although the molecular mechanism of 
hormonal action is yet to be examined, the hormonal activity 
of AIMP1 could be used to rescue acute hypoglycemia, 
which is a critical concern for patients with diabetes. In 
addition, its lipolytic activity in adipose tissue can be 
explored as potential anti-obesity agent.  

  8.   AIMP1 structure and functional dissection 

 Although AIMP1 is recognized as cytosolic protein anchored 
to the multi-ARS complex, it seems to be present in other 
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  Figure 3     . Structural feature of the C-terminal domain of AIMP1 and different activities along its polypeptide. A.  AIMP1 
C-terminal domain (aa 153 – 312) was aligned with the homologous regions of  Saccharomyces cerevisiae  aspartyl-tRNA synthetase (DRS) 
and  Thermus theromphilus  phenylalanyl-tRNA synthetase (FRS) with slight modifi cation of the original data  [92] . The  α  helical and  β -sheet 
structures were marked with blue and red letters, respectively.  B.  Three-dimensional structure of the C-terminal domain of AIMP1  [92] . 
 C.  Different peptide regions of AIMP1 responsible for the indicated activities  [91] . The peptide region of AIMP1 involved in the interaction 
with Smurf2, the negative regulator of TGF- β  signal pathway, was recently identifi ed  [102] .    

intra- and extracellular locations playing diverse roles 
as described above   [90,91] . Based on the caspase cleavage 
site, 312 aa human AIMP1 can be divided to the 146 aa 
N-terminal and the 166 aa C-terminal domains. Although 
the 3D structure of the whole protein is not yet determined, 
the crystal structure of the C-terminal domain structure 
was solved at high resolution   [92,93] . As can be seen, the 
C-terminal domain containing OB fold shares a structural 
similarity with those of aspartyl-tRNA synthetase and 
phenylalanyl-tRNA synthetase of lower organisms 

( Figure 3A  and  B )   [45,93] . The crystal structure for the 
EMAPII domain in three-stranded  β -sheet ( β 1 –  β 3) and 
one- α  helix ( α 1) was also identified to be structurally 
homologous with some chemokines   [92] , such as RANTES   [94] , 
human monocyte chemoattractant protein   [95] , and 
neutrophil-activating peptide-2   [96] . The 152 – 166 aa 
peptide containing RIGRIIT motif is also present in 
tyrosyl-tRNA synthetase (YRS),  Caenorhabditis elegans  
MRS and  Saccharomyces cerevisiae  Arc1p. Although this 
peptide sequence of AIMP1 and YRS is thought to be 
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  Table 1     . The list of proteins with the potential to interact with AIMP1.   

 Gene  Full name  Database source  Ref. 

ATP5A1 ATP synthase alpha subunit 1 –  [81] 

BRCA2 Breast cancer 2, early onset Rhodes2005  [99] 

MAPK14 Mitogen activated protein kinase 14 Rual2005  [100] 

MAPK14 Mitogen activated protein kinase 14 HPRD:02619/04676  [41] 

DARS Aspartyl-tRNA synthetase Rhodes2005  [99] 

EIF1AX Eukaryotic translation initiation factor 1A, X-linked Rhodes2005  [99] 

EIF2S1 Eukaryotic translation initiation factor 2, subunit 1 alpha Rhodes2005  [99] 

EPRS Glutamyl-prolyl-tRNA synthetase Rhodes2005  [99] 

ERCC1 Excision repair cross-complementing rodent repair defi ciency1 HomoMINT:12394 –

ERCC1 Excision repair cross-complementing rodent repair defi ciency1 Rhodes2005  [99] 

GARS Glycyl-tRNA synthetase Rhodes2005  [99] 

GCLC Glutamate-cysteine ligase, catalytic subunit Rhodes2005  [99] 

HARS Histidyl-tRNA synthetase Rhodes2005  [99] 

IARS Isoleucyl-tRNA synthetase Rhodes2005  [99] 

LIG1 Ligase I, DNA, ATP-dependent Rhodes2005  [99] 

LIG4 Ligase IV, DNA, ATP-dependent Rhodes2005  [99] 

MARS Methionyl-tRNA synthetase HPRD:08864  [41] 

MARS Methionyl-tRNA synthetase Rhodes2005  [99] 

NARS Asparaginyl-tRNA synthetase Rhodes2005  [99] 

YBX1 Y box binding protein 1 Rhodes2005  [99] 

POLR2G RNA polymerase II polypeptide G Rhodes2005  [99] 

RARS Arginyl-tRNA synthetase HPRD:00142/04676  [44] 

RARS Arginyl-tRNA synthetase Rhodes2005  [99] 

RPA1 Replication protein A1, 70 kDa Rhodes2005  [99] 

RPA3 Replication protein A3, 14 kDa Rhodes2005  [99] 

MRPS12 Mitochondrial ribosomal protein S12 Rhodes2005  [99] 

RPS11 Ribosomal protein S11 Rhodes2005  [99] 

RPS23 Ribosomal protein S23 Rhodes2005  [99] 

CLEC11A C-type lectin domain family 11,member A Rhodes2005  [99] 

HSP90B1 gp96/heat-shock protein 90 kDa beta, member 1 –  [23] 

JTV1 AIMP2/p38 –  [46] 

MAD1L1 Mitotic arrest defi cient-like 1 J_Lim2006  [101] 

MAD1L1 Mitotic arrest defi cient-like 1 HomoMINT:38129 –

PLA2G6 Phospholipase A2, group VI HomoMINT:43418 –

CSDA Cold shock domain protein A Rhodes2005  [99] 

YARS Tyrosyl-tRNA synthetase Rhodes2005  [99] 

KHSRP KH-type splicing regulatory protein Rhodes2005  [99] 

EIF1AY Eukaryotic translation initiation factor 1A, Y-linked Rhodes2005  [99] 

ATG12 Autophagy related 12 homolog Rhodes2005  [99] 

SCYE1 AIMP1/small inducible cytokine subfamily E, member 1 HPRD:04676  [92] 

SCYE1 AIMP1/small inducible cytokine subfamily E, member 1 Rual2005  [100] 

SCYE1 AIMP1/small inducible cytokine subfamily E, member 1 HomoMINT:29540/4644 –
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 Gene  Full name  Database source  Ref. 

EFTUD2 Elongation factor Tu GTP binding domain containing 2 Rhodes2005  [99] 

AIM2 Absent in melanoma 2 Rhodes2005  [99] 

HOMER2 Homer homolog 2 HomoMINT:28433 –

HOMER1 Homer homolog 1 Rhodes2005  [99] 

HMG20B High-mobility group 20B HomoMINT:44126 –

FARS2 Phenylalanyl-tRNA synthetase 2, mitochondrial Rhodes2005  [99] 

XPOT Exportin, tRNA (nuclear export receptor for tRNAs) Rhodes2005  [99] 

HARSL Histidyl-tRNA synthetase 2, mitochondrial Rhodes2005  [99] 

CCDC22 Coiled-coil domain containing 22 HomoMINT:44127 –

CCDC22 Coiled-coil domain containing 22 Rhodes2005  [99] 

MRPL2 Mitochondrial ribosomal protein L2 Rhodes2005  [99] 

MRPS17 Mitochondrial ribosomal protein S17 Rhodes2005  [99] 

EIF5A2 Eukaryotic translation initiation factor 5A2 Rhodes2005  [99] 

SMURF2 SMAD specifi c E3 ubiquitin protein ligase 2 –  [102] 

MTMR9 Myotubularin related protein 9 HomoMINT:42342 –

GC11102 EIF1AD/eukaryotic translation initiation factor 1A domain containing Rhodes2005  [99] 

  Table 1     . The list of proteins with the potential to interact with AIMP1 (continued).   

responsible for monocyte and leukocyte migration, 
as well as for inflammation response   [97,98] , MRS and 
Arc1p do not manifest a similar activity, suggesting that 
some other factors are necessary for cytokine activity. 
With this structural feature, AIMP1 has an affinity 
to nucleic acids including tRNAs   [49] . Within the multi-
ARS complex, it also binds to AIMP2 through its 
peptide spanning 53 – 77 aa, in addition to RRS, 
working as core protein for the assembly and stability of 
the whole complex. For the sequestration of gp96, it 
seems to use the peptide of 54 – 192 aa ( Figure 3C )   [23,46] . 
Refined deletion mapping further dissected the peptide 
regions based on their functional involvement ( Figure 3C ), 
namely the 6 – 46, 101 – 114, 114 – 192 aa regions are 
dedicated for fibroblast proliferation/collagen synthesis, 
endothelial cell apoptosis/caspase-3 activation and endothelial 
cell migration, respectively   [91] . 

 In this paper, we collected all the known and predicted 
molecular partners of AIMP1, which are obtained from the 
published reports and available databases ( Table 1 ) and then 
generated the predicted linkage map of AIMP1 ( Figure 4 ). 
Although many of the AIMP1-linked proteins in this 
diagram need to be experimentally validated, this proposed 
interaction network of AIMP1 implies that there are still 
more functions to be found from this factor. In particular, 
heavy connection to nuclear factors suggests its potential 
role in nuclear processes. Based on these functions and 
diverse molecular interactions, AIMP1 may be one of the 
protein hubs working at systems level serving as a coordinator 
of diverse cellular processes.  

  9.   Expert opinion 

 Although all human proteins could be pathologically 
associated with a certain disease as long as they have 
biological functions, they would not necessarily make 
druggable targets or agents in practice for various 
shortcomings. Among several criteria required for a 
‘druggable’ condition, functional specificity of the target 
protein is highly valued to avoid undesirable side effect or 
toxicity and for the convenience of activity control. 
However, even if we find a protein that seems to be 
specifically dedicated to a single activity, its functional 
specificity would be diluted through the complex network 
as at least one of the proteins connected to this protein 
is multi-linked to other biological processes. Thus, it 
would be somewhat unrealistic to expect that a drug would 
give only the expected activity from its target site. Even 
those that are thought to be dedicated to a specific function 
may actually have more functions as we further investigate 
them. In this respect, AIMP1 provides a good example. 
Although there was little knowledge on its function of 
AIMP1 several years ago, it is now expected to be a hub 
protein whose functions are linked to extremely diverse 
biological processes as illustrated here. Considering the 
complexity of our body system, we may now have to 
reconsider whether it is realistic or practical to chase the 
proteins with just a single function. Instead, we may want 
to explore multi-functional proteins more strategically to 
maximize the efficacy of the desired function whereas 
minimizing the side effect. 
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  Figure 4     . Interaction network of AIMP1 with its potential target proteins.  The suggested AIMP1-associated proteins were 
collected from the databases of HPRD  [103] , Rhodes 2005  [99] , HomoMINT  [104] , Rual2005  [100]  and other reports describing the molecular 
interactions including AIMP1/p43. The linkages of AIMP1 in this diagram do not necessarily mean direction interaction with AIMP1 and 
most of the suggested AIMP1-interacting partners should be experimentally validated except for a few cases whose interactions were 
proven such as RRS (arginyl-tRNA synthetase), AIMP2/p38, gp96 and Smurf2. The detailed information for each target is shown in
 Table 1.  The dynamic graphic view of AIMP1-interaction network can be also obtained at http://pharmdb.org.    
   AIMP: ARS-interacting multi-functional proteins; ARS: Aminoacyl-tRNA synthetase.   

 Protein network at physiological level seems to have 
hierarchical structure. In this structure, some proteins would 
be positioned at the top level in the signaling network, 
being involved in multiple pathways, whereas others would 
be located in the downstream of the network, dedicated to 
specific roles. As a drug touches downstream targets, its 
action could be more specific but its impact may be weak or 
limited. In contrast, a multi-functional target protein may 
be involved in each individual pathway less strongly and 
specifically but its total impact on whole body system could 
be stronger. This would be particularly true in the case of 
cancer targets. Because anticancer drugs need to kill or 
suppress cancer cells, they may prefer the targets that would 
efficiently disrupt the viability of cancer cells although 

keeping the normal cells intact. In practice, it is not easy to 
eradicate cancer cells by inhibiting a single cancer-associated 
target as biological systems are pretty resilient to disturbance. 
For this reason, many drug companies are designing the 
combination therapy to generate synergy among the different 
drug targets. If we explore a target working at multiple 
directions against cancer, it would give an effect similar to 
the combination therapy hitting multiple targets 
simultaneously. In this regard, the multi-functionality of 
AIMP1 can be considered as advantage for therapeutic 
usage. For instance, AIMP1 can effectively suppress cancer 
by the combination of its angiostatic and immune-
stimulating activities. Similarly, antiAIMP1 could give 
synergistic effect on wound repair by boosting fibroblast 
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proliferation, collagen production and the generation of 
keratinocyte growth factor simultaneously. 

 As the development of ‘omics’ increases, many 
hidden functions and unexpected connections among 
the known proteins are continuously unveiled. Considering 
much less number of protein-coding genes than 
expected, one can even predict that multi-functionality 
of proteins would be more dominant than single functionality. 
If this is really the case, it would become more difficult 
to chase ‘selectivity’ of a protein function as they are all 
interconnected. Thus, it is about time to accept the reality 
of our body system, which consists of complex networks of 
proteins with multiple functions and design drugs based on 
systems perspectives. If we cannot avoid the side effect 
resulting from the multi-directional network surrounding a 

target, we should begin to look into the highly effective 
target proteins working at systems level.         
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